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This study addresses the inefficiency and error-proneness of traditional manual compliance 
checks in the Architecture, Engineering, and Construction (AEC) sector. We present a case 
study methodology automating AEC design/compliance tasks (ASHRAE 62.1 ventilation, 
ADA accessibility, structural foundation sizing) using AI automations and agent-like 
components integrated into a No-Code/Low-Code (NC/LC) visual workflow platform. The 
approach includes embedded Large Language Model (LLM)-based Quality Assurance 
(QA/QC) checkpoints and utilizes Retrieval-Augmented Generation (RAG) to enhance 
reliability. Results demonstrate significant efficiency gains, reducing execution times by up 
to 99.9% post-setup versus manual methods, alongside high accuracy (0% error rate) from 
automated components compared to manual baselines (1.25-2.5% errors). LLM QA/QC 
effectively flagged discrepancies but showed minor inconsistencies (94-95% success rate), 
indicating its utility as an assistive validation layer requiring oversight. This research 
contributes empirical evidence for an integrated NC/LC and modular AI approach for 
diverse AEC compliance tasks, offers practical evaluation of embedded LLM validation, and 
presents necessary case study performance data. Limitations include the specific case 
studies/tools used and the controlled manual baseline.  

The findings show a practical path for AEC firms to improve workflow efficiency, enhance 
accuracy, reduce risks, and democratize automation without deep programming expertise. 
Enabling more reliable compliance contributes to safer infrastructure and fosters innovation 
by potentially shifting professional roles. 
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Highlights 
• AI automation via NC/LC achieves up to 99.9% time reduction and eliminates errors in 

AEC compliance tasks. 
• Utilizing RAG enhances LLM-based QA/QC by ensuring traceable validation against 

specific regulations, though oversight remains key. 
• No-Code/Low-Code platforms democratize AI, enabling AEC professionals to create 

custom automation tools without coding. 
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1 Introduction  
The Architecture, Engineering, and Construction (AEC) industry faces persistent challenges in 
accuracy, efficiency, and adherence to increasingly stringent regulations (SmartBrief, 2024). The 
sector’s noted slow adoption of digital tools (Whatfix, 2024) creates systemic inefficiencies, 
particularly in design and compliance verification. Manual workflows, characterized by laborious 
interpretation of dense regulatory texts and 2D drawings, are frequently slow, inconsistent, and 
susceptible to error. These issues contribute to project delays, cost overruns, and design deficiencies, 
often linked to inadequate experience, poor coordination, or ineffective knowledge transfer (Aslam & 
Umar, 2024). Specific bottlenecks include cumbersome document creation and management, 
inefficient review cycles, and difficulties in cross-referencing requirements (Zou et al., 2023). 

While Building Information Modelling (BIM) established a crucial digital foundation by providing 
structured data, it has not fully resolved these underlying workflow challenges (Zou et al., 2023). 
Significant hurdles remain in translating complex, ambiguous regulatory language into computable 
logic and ensuring the consistently detailed models required for reliable automated checking. 

Artificial Intelligence (AI) is emerging as a transformative force, reshaping traditional practices. AI 
tools, particularly when integrated within accessible No-Code/Low-Code (NC/LC) platforms, offer a 
promising path forward. This synergy automates repetitive, rule-based tasks like code lookup, 
calculation, and validation, freeing professionals to focus on higher-value creative and problem-
solving activities. NC/LC environments democratize the creation of these automated solutions, 
enabling domain experts without deep programming skills to build and manage tailored workflows 
(DevOps, 2025). This aligns with broader industry trends toward automation and digital 
transformation, driven by demands for improved productivity and efficiency. 

However, the adoption of AI, especially Large Language Models (LLMs) used for design development 
and interpreting regulations, introduces challenges regarding reliability, validation (such as mitigating 
hallucination risks), and accountability. Ensuring trust in these systems within safety-critical 
applications is paramount (Emaminejad et al., 2022). 

This study demonstrates a practical, NC/LC-based approach using AI automations and agent-like 
components to automate specific AEC design calculation and compliance verification tasks, 
incorporating embedded LLM-based validation. It aims to address the need for accessible, efficient, 
and reliable design and compliance tools. We investigate performance through three common AEC 
case studies: ASHRAE 62.1 ventilation calculations, ADA accessibility compliance checks, and 
preliminary structural foundation sizing. Our methodology utilizes a visual workflow platform (n8n, 
2025) integrated with LLM components and Retrieval-Augmented Generation (RAG) for enhanced 
design and QA/QC (Bali, 2024). This research addresses the following questions: (1) Can AI 
components in NC/LC tools accurately automate these AEC tasks? (2) How do they compare to 
manual methods in speed and accuracy? (3) How effective are embedded LLM QA/QC strategies? (4) 
What are the practical implications for AEC workflows?  

Findings suggest significant efficiency gains and improved consistency are achievable, paving the way 
for AI to become a trusted collaborator in design and compliance, while highlighting the ongoing 
necessity for human oversight (Graydon & Lehman, 2025). The drive towards such automated 
solutions is also evidenced by real-world initiatives aiming to streamline regulatory processes. 
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2 Literature Review / Conceptual Basis 
This section establishes the study's theoretical foundation by defining key concepts, reviewing 
relevant theories, identifying research gaps, and outlining the conceptual model. 

2.1 Defining Key Concepts  

This study integrates several key technologies and concepts within the AEC context: 
• AI Implementations: AI integration in AEC workflows spans from automation to autonomous 

agents. This study explores components across this range:  

1. Traditional Automation: Structured, predefined workflows executing specific tasks reliably, 
sometimes enhanced by AI (e.g., for data extraction) and recently made more accessible via 
NC/LC platforms. Suitable for critical processes demanding high fidelity.  

2. Dynamic AI Automation: Workflows where AI analyses data to select between predefined paths, 
adding flexibility (e.g., conditional routing based on compliance checks).  

3. AI Agents: Software systems exhibiting greater autonomy to perceive inputs, reason, and act 
towards defined goals, offering adaptability but requiring robust validation due to potential 
variability. 

• No-Code/Low-Code (NC/LC) Platforms: Visual development environments enabling users with 
minimal or no coding expertise (often domain experts) to build applications and automate 
processes using drag-and-drop interfaces and pre-built components (SAP, n.d.). They empower 
professionals to create custom automation workflows, accelerating digital tool adoption.  

• Automated Design Calculation: The use of digital tools to perform engineering computations 
based on established formulae and guidelines (e.g., ASHRAE standards, structural principles), 
improving speed and reducing manual calculation errors common in AEC. 

• Automated Compliance Verification (ACV): Programmatically checking designs or data against 
regulatory codes and standards (Mendonça & Ferreira, 2024; Zou et al., 2023). While various ACV 
techniques exist (rule-based, graph-based, AI), challenges remain, particularly in interpreting 
complex regulations and ensuring system reliability.  

• Large Language Models (LLMs): AI models trained on vast text datasets, capable of understanding 
natural language, generating human-like text, and performing reasoning tasks. Their application in 
AEC is nascent but promising for ideation and interpreting complex regulatory documents. 
However, they are known to produce plausible but incorrect information "hallucinations", raising 
significant concerns about their fitness for safety-critical applications without rigorous validation  
(K2View, 2024; Graydon & Lehman, 2025). 

• LLM Validation and QA/QC: Essential processes to ensure the reliability and accuracy of LLM 
outputs, particularly in safety-critical applications like AEC compliance. This involves strategies to 
mitigate risks like hallucination and assess trustworthiness.  

• Retrieval-Augmented Generation (RAG): An AI technique designed to improve LLM accuracy and 
reduce hallucinations by grounding responses in specific, relevant information retrieved from a 
trusted external knowledge base (e.g., a database of current building codes) before generation 
(Bali, 2024). This is crucial for ensuring compliance checks reference authoritative sources and 
overcome limitations like outdated training data inherent in general LLMs. 

2.2 Existing Theories and Frameworks  

This research is informed by theories related to technology adoption, digital transformation, and 
human-computer interaction:  
• Technology Acceptance: Models like TAM and UTAUT (Venkatesh et al., 2003) suggest adoption 

hinges on perceived usefulness, ease of use (effort expectancy), and social influence. For AI in 
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AEC, user trust is a critical mediating factor influenced by system reliability and transparency 
(Emaminejad et al., 2022). 

• Digital Transformation: AEC is undergoing a shift from basic digitization towards broader 
transformation (Agrawal et al., 2023). NC/LC platforms enabling expert-led AI development 
accelerate this, addressing the sector's noted slower adoption rates (Stanton Chase, 2024).  

• Human-AI Collaboration & Explainability: Effective integration requires designing for trust, 
transparency, and appropriate oversight (Endsley, 2017; Marusich et al., 2024). Explainable AI (XAI) 
techniques and Uncertainty Quantification (UQ) are vital for making AI reasoning understandable 
and signalling when human judgment is needed, particularly for safety-critical decisions.  

• Levels of Automation (LoA): Frameworks characterizing the degree of autonomy in systems help 
classify AI implementations (Rafizadeh et al., 2024). Defining the appropriate LoA for different AEC 
tasks is crucial for effective human-AI work division (Altavilla & Blanco, 2020). 

2.3 Knowledge Gaps and Research Opportunities 

Despite growing interest in AI and automation for AEC, several gaps remain:  
• Lack of Integrated NC/LC + AI Compliance Solutions: While ACV and NC/LC are studied (Yamusa 

et al., 2024), there is limited research demonstrating integrated solutions using modular AI 
components within accessible NC/LC platforms for diverse AEC compliance tasks.  

• Need for Practical LLM Validation Methods in AEC: General LLM risks are known, including 
hallucination (Emaminejad et al., 2022), but practical, embedded validation mechanisms (like 
LLM-based QA/QC using RAG) specifically evaluated within AEC compliance workflows are 
underexplored especially given the critical perspective that LLM outputs require robust verification 
before use in high-stakes engineering contexts (Graydon & Lehman, 2025).  

• Scarcity of Empirical Evidence: Beyond theoretical possibilities, there is a need for empirical data 
from case studies showing the real-world performance, usability, and workflow implications of 
integrated AI/NC-LC systems in specific AEC scenarios. 

2.4 Proposed Conceptual Model 

This study utilizes a conceptual model (illustrated in the Methodology section, Figures 1 & 2) 
implemented within an NC/LC platform. The model comprises: (1) User Inputs (e.g., design 
parameters, digitized code excerpts); (2) NC/LC Platform n8n for workflow orchestration; (3) Modular 
AI Automations/Agents performing specific tasks (ASHRAE, ADA, Structural calculation/checking) 
including using RAG to extract relevant regulations; (4) An LLM Validation Checkpoint using RAG and 
comparative checks for QA/QC; (5) Outputs (compliance reports, calculated values) designed for 
human review and potential intervention. This architecture emphasizes modularity, accessibility via 
NC/LC, embedded validation (addressing Gap 2), and human oversight, aligning with HCI/Trust 
principles  and enabling empirical assessment (addressing Gap 3) of an integrated solution 
(addressing Gap 1). 

3 Methodology  
This methodology details the framework used to develop, implement, and evaluate the AI automations 
and agent-like components. The work was conducted within an NC/LC platform for AEC design 
calculation and compliance verification, aligning with the conceptual model presented in Section 2.4. 

3.1 Research Design 

This research uses a case study-driven methodology to evaluate the feasibility and performance of 
modular AI components within an NC/LC workflow automation platform. This approach allows for 



 
Mel Awasi1  

 Proceedings of Digital Frontiers in Buildings and Infrastructure International Conference Series         Volume 2025 / Page 5 

exploring complex processes through replicable scenarios with representative AEC tasks. The three 
case studies—ASHRAE 62.1 ventilation calculations, ADA accessibility compliance checks, and 
structural foundation sizing—were specifically chosen because they represent simple, familiar design 
and compliance tasks within the AEC industry. This selection demonstrates how NC/LC tools can 
automate routine work without requiring deep AI expertise, making the benefits of this approach 
tangible and accessible. Quantitative comparisons focused on task completion time and error rates 
between a controlled manual baseline and the automated workflows. Qualitative assessment focused 
on the effectiveness of an embedded LLM-based validation layer for QA/QC. 

3.2 System Development and Tools 

We developed the system using n8n, a fair-code, visual workflow automation tool. We selected it for 
its flexibility in handling complex logic (conditionals, loops, error handling), its customization options 
with Python and JavaScript integration, its AI-powered development assistance (the "AskAI" feature), 
and its self-hosting capability for data control. The tool's open-source nature and active community 
support were also key factors. Key AI components developed as modular n8n nodes/sub-workflows 
included: 
• ASHRAE 62.1 Component: Calculated required ventilation rates based on ASHRAE 62.1 section 

6.2, using input room parameters (area, occupancy) and referencing digitized standard tables 
through Google Sheet Lookup. Standard tables were manually converted into a Google Sheet 
format. 

• ADA Compliance Component: Implemented via two distinct methods for comparison:  
• Method 1 (OCR + LLM Extraction): Utilized an OCR service (via Mistral API) to process the ADA 2010 

standard PDF, followed by an LLM information extractor prompted to extract specific dimensional 
requirements (e.g., door widths, clearances) for comparison against design.  

• Method 2 (RAG Approach): Leveraged Retrieval-Augmented Generation. The ADA 2010 standard 
text was vectorized and stored in Pinecone. An LLM agent was prompted with the design scenario 
(e.g., manual swinging door dimensions), queried the Pinecone vector store to retrieve relevant 
ADA clauses, and then used the retrieved text to perform the compliance check. LLM query sent to 
validate the accuracy of the retrieved clauses from vector space. 

• Structural Foundation Sizing Component: Performed preliminary sizing calculations for a square 
footing based on user inputs (dead load Gk, live load Qk, allowable bearing pressure q_allow) 
following Eurocode 7 / UK practice principles. 

• LLMs Tested: We tested multiple LLMs via API for various components and validation steps—
including OpenAI (GPT-4o-mini), Google (Gemini 2.0), and DeepSeek (deepseek_chat)—to assess 
performance differences. Older/other models showed poor reliability in initial tests. 

3.3 Integration Methodology  

Components were integrated within n8n workflows. Key steps involved: 
• Knowledge Base Preparation: Digitizing relevant code excerpts (ASHRAE tables, ADA 2010) into 

accessible formats (Google Sheets, Markdown). For the RAG method, ADA text was chunked, 
vectorized using OpenAI embeddings (text-embedding-3-small), and stored in Pinecone.  

• Data Input/Output: Using Google Sheets and simple forms for managing input parameters and 
storing output results.  

• API Connections: Utilizing n8n's HTTP Request nodes to connect to external APIs for LLMs, OCR 
services, and the Pinecone vector database.  

• Workflow Orchestration: Designing the sequence of operations (trigger -> input gathering -> AI 
component execution -> LLM validation step -> comparison/logic -> output generation) using n8n's 
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interface, including conditional 'IF' nodes and 'Looping' nodes for batch processing multiple 
rooms/doors. Figures 1 and 2 illustrate samples of workflow implementations. 

 
Figure 1. The n8n workflow for ASHRAE 62.1 calculation and validation. The 'Design Calculation' stage (yellow) automates the 

ventilation calculation based on input data. The 'Design Validation QA/QC-LLM' stage (green) uses a separate LLM call to 
independently verify the result and flag discrepancies.  

  
Figure 2. The n8n workflow for ADA compliance using a Retrieval-Augmented Generation (RAG) approach. The 'Code 

Validation' stage (green) uses an AI Agent and Pinecone vector store to retrieve relevant ADA clauses for the compliance 
check. The 'QA/QC' stage (red) then uses a separate LLM call to verify the accuracy of the retrieved clauses. 

3.4 Case Studies Scenarios 
Three distinct and representative AEC scenarios were defined:  
• ASHRAE: Classroom, 100 m², 35 occupants (Standard: ASHRAE 62.1-2022).  
• ADA: Manual Swinging Door with specific dimensions/clearances (Standard: ADA 2010).  
• Structural: dead load (Gk) = 700kN, live load (Qk) = 600 kN, allowable bearing pressure (q_allow) = 

240 kPa (Standard: Eurocode 7 / UK practice). 

3.5 LLM Validation, Sanity Check and QA/QC Protocols 

An LLM-based validation/sanity check step was incorporated: 
• For ASHRAE and Structural cases, the output from the primary calculation component was 

compared against an independent calculation performed by a separate LLM call using the same 
input data.  

• For ADA Method 1 (OCR), validation focused on manually verifying the accuracy of the LLM's 
extraction of requirements from the OCR'd text. For ADA Method 2 (RAG), validation relied on 
assessing the accuracy of the retrieved clauses and the LLM's reasoning based on them.  

• Discrepancies identified by the automated comparison or manual checks triggered flags indicating 
a need for human review.  

• Hallucination mitigation strategies included structured prompt engineering (requesting step-by-
step reasoning or specific output formats), using RAG to ground ADA checks in source text, and 
implementing error handling nodes to manage mismatches during the validation comparison. 
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3.6 Data Analysis  

Metrics included task completion time and error counts/types (manual vs. automated). Manual 
baselines were established by an engineer, with automated times/results logged by n8n and compared 
against ground truth. LLM sanity check results provided an internal QA metric. Analysis involved 
tabulating data, calculating mean differences (%), and using visualizations for comparison. 

3.7 Ethical Considerations 

No personal or proprietary project data was used; scenarios were synthetic or anonymized. We 
followed responsible AI practices emphasizing transparency and accountability. 

4 Results- Key Findings  
This section presents the quantitative findings from the three case studies comparing manual 
workflows against the developed AI automations and agent-like components, focusing on task 
completion time, accuracy, and LLM validation outcomes. Automated execution times reported reflect 
workflow processing after the initial setup phase; setup times (ranging from 1.5 to 4 hours per 
workflow) are noted separately as they represent an initial investment recouped through repeated use.  

4.1 Case Study 1: ASHRAE 62.1 Ventilation Results 

The automated workflow for calculating ventilation rates for 80 rooms demonstrated significant 
efficiency gains. Post-setup execution time was reduced by approximately 99.7% compared to the 
manual baseline. Furthermore, the automated component eliminated calculation errors observed in 
the manual process (0% error rate vs. 1.25%). The integrated LLM sanity check identified four 
discrepancies during testing, indicating a 95% success rate for this QA/QC step in this scenario. 
Detailed results are presented in Table 1. 

Table 1. ASHRAE 62.1 Ventilation Calculation Results Summary 

Metric Manual Baseline Automated Workflow 
Execution Time (80 rooms) 16 hours (960 min) 3 minutes 
Initial Setup Time N/A 3 hours (180 min) 
Time Reduction (Post-Setup) N/A 99.7% 
Error Rate (Calculations) 1.25% (1/80 rooms) 0% 
LLM Sanity Check Error Rate N/A 5% (4/80 rooms flagged) 

4.2 Case Study 2: ADA Compliance Results 

In the 80-door ADA compliance check scenario, both automated methods substantially saved time 
and improved accuracy over manual checks. Automated execution time fell by 99.8-99.9%, while 
accuracy improved from 97.5% (manual) to 100% (automated). Method 1 (OCR + LLM Extraction) had 
a shorter setup time in this instance, while Method 2 (RAG) offered enhanced traceability by grounding 
compliance checks in retrieved code clauses. A summary of these results is shown in Table 2. 

Table 2. ADA Compliance Check Results Summary 

Metric Manual Baseline Automated (Method 1: OCR) Automated (Method 2: RAG) 
Execution Time (80 doors) 18 hours (1080 min) 2 minutes 1.5 minutes 
Initial Setup Time N/A 3 hours (180 minutes) 4 hours (240 minutes) 
Time Reduction (Post-Setup) N/A 99.8% 99.9% 
Accuracy (Compliance Check) 97.5% (2 errors/80) 100% 100% 
Key Dependency Human Judgment OCR + LLM Parsing Clause Retrieval (RAG) 
LLM Sanity Check Error Rate - - 6% (5/80 doors flagged) 
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4.3 Case Study 3: Structural Foundation Sizing Results 

The automated workflow for preliminary structural foundation sizing demonstrated significant 
execution time savings, reducing the time per check by approximately 96.7% post-setup compared to 
the manual method. Initial tests showed the automated component matched manual accuracy (100% 
correct). The LLM sanity check showed high consistency over 20 repeated runs, flagging one 
inconsistency (95% success rate). Table 3 provides these results, also noting that the initial setup time 
exceeds the time required for a single manual check, emphasizing the need for repeated use to realize 
efficiency benefits. 

Table 3. Structural Foundation Sizing Results Summary 

Metric Manual Baseline Automated Workflow 
Execution Time (Per Check) 15 minutes 30 seconds 
Initial Setup Time N/A 1.5 hours (90 min) 
Time Reduction (Post-Setup) N/A 96.7% 
Accuracy (Initial Test) 100% (0% error) 100% (0% error) 
LLM Consistency; Sanity Check Error Rate (20 
runs) N/A 5% (1/20 runs flagged) 
Note: N/A Setup time > manual time for single use. 

5 Discussion 
The findings offer valuable insights into the application and impact of integrating AI automations and 
agent-like components within NC/LC platforms for AEC design and compliance workflows. 

5.1 Interpretation of Key Findings 

The results directly address the research questions. (RQ1 Accuracy): The high accuracy (0% error rate) 
of automated components on RAG and rule-based tasks confirms their potential fidelity, aligning with 
literature on automation reducing human error. However, the LLM validation component's limitations 
(5-6% inconsistency, observed as minor calculation drifts during testing) underscore the need for 
human oversight in safety-critical applications, despite its utility in flagging issues. This aligns with 
broader concerns regarding LLM fitness for high-stakes engineering tasks without rigorous verification. 
The ADA case highlighted dependencies, with RAG offering slightly better grounding than 
OCR/extraction for reliability. (RQ2 Speed): Dramatic post-setup execution time reductions (up to 
99.9%) confirm the potential efficiency for repetitive tasks and help address noted AEC productivity 
gaps, consistent with ACV literature (e.g., Yamusa et al., 2024). However, the significant setup time 
highlights the effort-expectancy trade-off relevant to adoption models (Venkatesh et al., 2003; 
Emaminejad et al., 2022). (RQ3 LLM QA/QC): Embedded LLM checks proved partially effective, 
identifying discrepancies and enhancing traceability via RAG, supporting HCI/XAI principles (e.g., 
Endsley, 2017; Marusich et al., 2024; Emaminejad et al., 2022). Yet, observed inconsistencies confirm 
LLMs currently serve best as assistive QA layers, not infallible validators, particularly for calculations 
where tool augmentation shows promise (Goodell et al., 2024), aligning with known LLM limitations 
(K2View, 2024). (RQ4 Implications): Collectively, results suggest potential workflow transformation 
through enhanced speed and accuracy, alongside the need for careful implementation strategies 
involving human oversight and the democratizing potential of NC/LC, potentially mitigating skills gap 
issues by empowering domain experts. 



 
Mel Awasi1  

 Proceedings of Digital Frontiers in Buildings and Infrastructure International Conference Series         Volume 2025 / Page 9 

5.2 Comparison with Literature and Theory 

Findings align with research showing ACV efficiency benefits (Yamusa et al., 2024; Aslam & Umar, 
2024) and real-world initiatives driving towards automated compliance, while the setup time highlights 
potential adoption barriers (Venkatesh et al., 2003; Emaminejad et al., 2022). The successful NC/LC 
implementation supports democratization arguments (SAP, n.d.) and contributes empirically to digital 
transformation literature (Agrawal et al., 2023), addressing the gap between specialized ACV tools and 
accessible platforms (Yamusa et al., 2024; Stanton Chase, 2024). LLM validation results offer practical 
insights complementing HCI/XAI literature on trust and transparency (Endsley, 2017; Emaminejad et 
al., 2022; Marusich et al., 2024). This is particularly relevant given the identified lack of systematic 
research into trust dimensions like reliability and safety for AI within the specific AEC context. The 
findings also reinforce awareness of LLM risks including hallucination (K2View, 2024; Bali, 2024), 
addressing the gap regarding practical validation methods for AEC. This study provides needed 
empirical evidence from case studies, filling another identified gap. 

5.3 Implications of the Study 

The practical implications for AEC include significant potential for improved productivity via 
automation of routine compliance/design tasks, reduced risk through enhanced accuracy, and 
democratization of advanced tools via NC/LC platforms empowering domain experts. This 
necessitates a shift in professional roles towards AI oversight and higher-level problem-solving. 
Theoretically, the study provides empirical context for AI adoption, digital transformation, and human-
AI collaboration models in AEC. Critically, it underscores the need for robust, embedded validation 
strategies when deploying LLMs in safety-critical applications. This also highlights the need for clear 
governance frameworks and reinforces professional accountability in AI-assisted workflows. 

5.3.1 Societal & Institutional Adoption Pathways 

The widespread adoption of AI tools in AEC requires a multi-faceted approach addressing governance, 
liability, and workforce evolution. Professional and regulatory bodies must collaborate to create 
governance frameworks that include standards for machine-readable digital submissions and 
certified protocols for auditing AI-assisted designs to ensure public safety and transparency. The use 
of AI also raises complex questions about professional liability, as an erroneous output could create a 
chain of liability involving multiple parties. This necessitates an evolution of industry standards and 
contracts to clarify roles, responsibilities, and accountability in human-AI workflows. Furthermore, as 
AI automates repetitive tasks, the workforce must adapt through upskilling and retraining in digital 
literacy and AI oversight to transition from performing manual tasks to managing and validating 
automated systems. 

5.4 Limitations of the Study 

While this study provides valuable insights, several limitations should be acknowledged when 
interpreting the results. Limitations influencing generalizability include the scope (three specific case 
studies), dependency on the specific tools used (n8n, selected LLMs/APIs), a controlled manual 
baseline comparison, which may not fully capture real-world variability due to differing expertise or 
time pressures, inherent LLM reliability factors (consistency, updates), and the setup time investment 
required.  
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5.5 Future Research Directions 

Future work should expand the scope to more complex compliance scenarios and diverse AEC tasks. 
Developing and testing more robust LLM validation techniques including RAG for direct parameter 
retrieval and tailored for AEC, conducting comparative analyses of different NC/LC platforms and AI 
models, performing longitudinal studies in real firms to assess adoption and scalability, deeper 
investigation of human-AI collaboration dynamics, and exploring integration with real-time data 
sources (e.g., IoT, digital twins, developing multi-agent systems, leveraging knowledge graphs, and 
investigating pathways towards AI as autonomous design advisors are key directions. 

6 Conclusions 
This paper demonstrated the successful implementation and evaluation of AI automations and agent-
like components within a No-Code/Low-Code (NC/LC) platform for automating specific AEC design 
calculation and compliance verification tasks (ASHRAE 62.1, ADA, structural foundation sizing). The key 
findings confirmed that this approach yields significant efficiency gains (up to 99.9% reduction in post-
setup execution time) and high accuracy for RAG and rule-based tasks compared to manual methods, 
addressing persistent industry challenges in productivity and error reduction. 

This paper provides case-study evidence on the practical application of integrated NC/LC and AI 
solutions in AEC compliance, filling identified gaps regarding accessible automation tools and 
practical validation methods. The embedded LLM-based QA/QC strategy proved partially effective, 
highlighting its potential as an assistive validation layer while simultaneously underscoring the critical 
need for robust verification protocols (potentially using RAG) and continued human oversight in safety-
critical applications due to inherent LLM limitations. 

The broader implications suggest a viable pathway for democratizing advanced automation in AEC 
firms, empowering domain experts through NC/LC tools and potentially reshaping professional roles 
towards higher-level oversight and problem-solving. For this transition to succeed, future work must 
address the critical need for clear governance frameworks and policies that can manage professional 
liability and guide regulatory integration. While acknowledging limitations related to scope and 
specific tools used, this research highlights the potential for these technologies to enhance efficiency, 
reduce compliance risks, and foster innovation. Ultimately, responsibly harnessing AI requires 
balancing automation benefits with rigorous validation and sustained human judgment to ensure the 
safety and reliability of the built environment. 
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