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Free-form structural designs are reshaping modern architecture with their expressive 
aesthetics and novel spatial configurations. However, their digital transformation still 
encounters obstacles, particularly in aligning fluid geometries with rigorous structural 
requirements, and in assembling high-quality datasets suitable for advanced machine 
learning (ML) methods. Traditional form-finding approaches often neglect critical factors—
such as material behavior, load paths, and construction logistics—resulting in discrepancies 
between conceptual 3D models and built outcomes. To overcome these challenges, this 
paper presents a novel pipeline that integrates ML with multi-objective evolutionary 
optimisation, using glued laminated timber (GLT) as a case study. Central to our method is a 
Transformer-based neural network that harnesses NURBS representations of 3D geometry, 
creating a structured dataset for curvature prediction. These ML-generated forms are then 
refined through an evolutionary optimisation process targeting minimal structural mass, 
stress, and strain energy. Experimental results show notable improvements in design 
performance, with reductions in mass (3.6%), stress (up to 15%), and strain energy (68% 
under mesh load) . This synergy of ML-driven geometry and robust optimisation significantly 
advances digital construction practices by fostering a data-driven, automated workflow for 
complex free-form design. Practical implications extend across the building and 
infrastructure sectors, enabling better alignment between conceptual design and final 
construction, lowering material consumption, and mitigating deviations during fabrication. 
By coupling aesthetic exploration with structural rigour, the framework underlines a crucial 
step toward more sustainable, efficient, and constructible free-form structures. 
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1 Section 1- Introduction  
As the regular architecture form could not meet the up-to-date aesthetic requirements, the distinct 
architectural expression and engineering challenges of free-form grid structures place them at the 
forefront of spatial design innovation (Pottmann, Schiftner, and Wallner 2008). While aesthetically 
appealing, the inherent complexity of these designs presents significant challenges for traditional 
workflows. The irregular forms introduce new obstacles for conventional design paradigms, affecting 
everything from design methods to design tools. These structures defy traditional modelling with 
complex surfaces that cannot be succinctly expressed through simple analytic functions, departing 
from conventional architectural forms. Current form-finding methods often overlook critical 
constraints, such as material properties, fabrication tolerances, and construction logistics, leading to 
costly adjustments later in the process (Gramazio and Kohler 2014). Historically, the genesis of such 
structures relied heavily on physical experimentation methods, such as the inverse hanging method for 
compression structures and the soap film technique for pre-stressed shapes (Bletzinger and Ramm 
2001; Otto and Rasch 1995). With the rise of digital transformation in the construction industry, there is 
an urgent need to develop intelligent, data-driven tools capable of handling this complexity efficiently 
and ensuring that free-form designs are both rational and constructible from the outset. The emergence 
of computational graphics technologies, notably Bezier surfaces, B-splines, and Non-Uniform Rational 
B-splines (NURBS), has revolutionised the field of complex geometry design and optimisation (Ghasemi 
et al. 2015; Vukašinović and Duhovnik 2019).  
To achieve the complex form, some new criteria need to be met compared with traditional regular 
architectural design, such as smoothness and geometric dimensions (Pottmann et al. 2015). In 
addition, the deviation of the real project from the original design needs to be decreased if considering 
constraints like material, structural stiffness and manufacturing, which means that additional 
knowledge about geometry is essential in the optimum design (Wallner and Pottmann 2011) . Existing 
approaches often fall short in integrating material properties and construction constraints into the 
design process, particularly in the early stages where decisions have the most significant impact on 
project outcomes. Traditional design and optimization approaches often fall short in addressing these 
complex requirements, spotlighting the necessity for sophisticated optimization techniques capable of 
untangling the complexities of free-form structure (Marano, Quaranta, and Greco 2009). The demand 
for new design techniques has led to the adoption and development of diverse computational methods 
and algorithms. Among these new techniques, optimisation algorithms (Xia et al. 2006) stand out due 
to their efficacy in addressing the multifaceted challenges inherent in the design and realisation of 
optimised structures. Related studies have shown that optimisation for structural performance 
effectively generates free-from structures with stable mechanical behaviour (Shimoda et al. 2016). 
Different algorithms have been applied and developed to the topology and shape optimisation (Çarbaş 
and Saka 2012), for example, gradient descent (Le, Bruns, and Tortorelli 2011), GA (Genetic Algorithm) 
(Goldberg 1989), evolution algorithm (Wang et al. 2021) and NGSA-II algorithm (Ma et al. 2019). Among 
the different algorithms, the optimisation objectives are various, including maximum displacement, 
element stress, overall quality of the structure, and strain energy (Ohmori, Kimura, and Maene 2009) by 
setting the coordinate of control points as the variable. However, in these multi-objective optimisation 
processes, the efficiency of the existing algorithm is not high, and the optimal results have low similarity 
to the initial surface before the optimisation (Wang et al. 2021).  
Under the context of calling for new technologies for rational free-form structures, machine learning 
(ML) has also shown its potential to generate free-form structures based on its data processing 
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capability (Huang, Kalogerakis, and Marlin 2015). ML is a new ground-breaking technique that has been 
widely used in computer vision, image processes, natural language processes, and generative tasks 
(Shinde and Shah 2018). In (Aksöz and Preisinger 2020), augmenting finite element analysis for 
optimizing space frame structures, aiming to reduce computation times significantly through ML has 
been discussed. Based on the learning and analysis of the data from the collected data (e.g. images, 
graphics), ML can generate new data of the same type through deep neural networks (DNNs) (Larochelle 
et al. 2009) and generative adversarial networks (GAN) (Goodfellow et al. 2014) in generative floor plans 
(Huang and Zheng 2018). Other ML networks like long short-term memory (LSTM) can be applied to 
dealing with graphical information (Xie and Wen 2019). Since the complex geometric information of the 
free-form morphology cannot be fully represented through graphics or images, the 2D application of 
these ML methods is one main limitation. 
Despite advances in ML form-finding and multi-objective optimisation, studies still treat geometry 
generation and structural tuning separately. None exploit sequential NURBS data while embedding 
GLT’s orthotropic limits, leaving design-to-fabrication gaps. This paper unifies Transformer-based 
curvature prediction with evolutionary optimisation to produce constructible, performance-driven free-
form timber grids. 
In this study, ML is utilised to generate rational geometric information for free-form morphology, 
considering the constraints from material properties by taking timber as the building material. Based on 
the predicted geometric information, the free-form morphology is further optimised for structural 
performance through evolution algorithms.  

2 Machine Learning Prediction for Material Rationality  
Quantifying the impact of building material properties on free-form morphology is challenging. The 
primary approach to using ML to predict the geometric information of free-form morphology involves 
using real free-form grid structures as the learning input. This input encompasses data about the extent 
to which building materials can be shaped. After training, ML can predict new curves based on the range 
of achievable shapes, as learned from previous cases of free-form structures. One significant 
advantage of using ML for prediction is its ability to integrate the design with material considerations 
effectively. 

2.1 Description for Free-form Morphology  
The mathematical model serves as a superior approximation method due to its high efficiency and 
accuracy. Among the various mathematical models, B-splines and NURBS are the most commonly 
utilized. Based on the rational B-spline, NURBS is developed by adding an extra parameter called 
weights. NURBS offers greater flexibility and adaptability across diverse geometric types than B-splines.  
A  𝑝𝑝 times NURBS curve is defined as: 

𝐶𝐶(𝑈𝑈) =
∑ 𝑁𝑁𝑖𝑖,𝑝𝑝(𝑢𝑢)𝜔𝜔𝑖𝑖𝑃𝑃𝑖𝑖𝑛𝑛
𝑖𝑖=0
∑ 𝑁𝑁𝑖𝑖,𝑝𝑝(𝑢𝑢)𝜔𝜔𝑖𝑖
𝑛𝑛
𝑖𝑖=0

,𝑎𝑎 ≤ 𝑢𝑢 ≤ 𝑏𝑏 (1) 

 
where 𝐶𝐶(𝑢𝑢) is the coordinate of a random point on the NURBS curve in x-y-z space, {𝑃𝑃𝑖𝑖} is the control 
point, 𝑁𝑁𝑖𝑖,𝑝𝑝(𝑢𝑢) , 𝑖𝑖 = 0,1, … ,𝑛𝑛 s the ith p times B-spline base function, which is called B-spline. {𝜔𝜔𝑖𝑖} is the 
weight factor. The coordinate of a random point on the NURBS surface can be expressed in the below 
formulation: 

𝑆𝑆(𝑢𝑢, 𝑣𝑣) =
∑ ∑ 𝑁𝑁𝑖𝑖,𝑝𝑝(𝑢𝑢)𝑁𝑁𝑗𝑗,𝑞𝑞(𝑣𝑣)𝜔𝜔𝑖𝑖,𝑗𝑗𝑃𝑃𝑖𝑖,𝑗𝑗𝑛𝑛

𝑗𝑗=0
𝑚𝑚
𝑖𝑖=0

∑ ∑ 𝑁𝑁𝑖𝑖,𝑝𝑝(𝑢𝑢)𝑁𝑁𝑗𝑗,𝑞𝑞(𝑣𝑣)𝜔𝜔𝑖𝑖,𝑗𝑗
𝑛𝑛
𝑗𝑗=1

𝑚𝑚
𝑖𝑖=1

,𝑎𝑎 ≤ 𝑢𝑢 ≤ 𝑏𝑏; 𝑐𝑐 ≤ 𝑣𝑣 ≤ 𝑑𝑑 (2) 
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where 𝑢𝑢,𝑣𝑣 are the parameters of the surface; 𝑝𝑝, 𝑞𝑞 are the number of powers of the surface; the surface 
is the segmentation functions about u,v; knot vectors 𝑈𝑈 ,𝑉𝑉  are combined by knots 𝑢𝑢 ,𝑣𝑣 . For curved 
surfaces, {𝑃𝑃(𝑖𝑖,𝑗𝑗)}  forms a control grid in two directions and the number of control points is (𝑛𝑛 +
1) × (𝑚𝑚 + 1); 𝑁𝑁𝑖𝑖,𝑝𝑝(𝑢𝑢) and 𝑁𝑁𝑖𝑖,𝑞𝑞(𝑣𝑣) are base functions of 𝑢𝑢 and 𝑣𝑣 directions;  {𝜔𝜔(𝑖𝑖,𝑗𝑗)} is the weight factor.  
 

2.2 Learning Prediction Experiment 
Selecting the appropriate ML method for prediction tasks is crucial as it determines the types of data 
used for training and testing. In (Meng, Sun, and Chang 2022), the free-form structure is depicted through 
curves, which are then transformed into sequential datasets. Building on this method of information 
transformation, the Transformer model is chosen for handling the transformed sequential data in this 
study. Originally designed for natural language processing (Lin et al. 2022), Transformers have been 
successfully adapted for various sequence modelling tasks across spatial domains (Zhu et al. 2021). 
Their self-attention mechanism provides a sophisticated means to model relationships between 
different points along a curve, effectively capturing both local and global dependencies.  
To complete the prediction learning task, choosing the appropriate free-form case is critical. For this ML 
process, the Center Pompidou-Metz Model is utilized as a case study to extract data for the Transformer. 
The structural design of the Centre Pompidou-Metz features a weave pattern, constructed from glue-
laminated timber, making it an excellent source of learning input shown in Figure 1. 

 

Figure 1 3D model of the Centre Pompidou-Metz case 

2.2.1  Data Transformation 

The main difficulty for ML prediction application in free-form structural morphology is the extraction of 
the information, as most of the ML deals with the data in 1 or 2 dimensions. In this model, all timber 
beams and columns are curved to create a distinctive free-form shape. An essential step following the 
3D modelling process is to extract geometric information and convert it into discrete numerical values 
to serve as inputs for ML. Each beam or column in this model is characterised by six faces and 12 
boundary lines, which include four critical curves that define the geometry necessary to generate this 
unique curved structure. The data transformation process is presented in Figure 2.  

 
Figure 2 Data extraction and transformation process 
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2.2.2 Training and Learning 

After establishing the dataset format, identifying the relevant features and the desired outputs is crucial 
for the prediction task. In this study, geometric information representing the free-form NURBS curve is 
extracted, including x-coordinate, y-coordinate, z-coordinate, position parameter, curvature, vector_x, 
vector_y, and vector_z. The features used to predict the curvature, vector_x, vector_y, and vector_z are 
the x-coordinate, y-coordinate, z-coordinate, and position parameters. For the pilot test, 16 curves are 
selected, each divided into 20 segments, resulting in 336 point samples. To enhance the dataset, K-fold 
validation is adopted, creating five folds with sample sizes of 3, 3, 3, 3, and 4, respectively. Following 
dataset preparation, the subsequent steps using the Transformer model include: 
After preparing the dataset, the following steps of using Transformer are as follows: 
• Positional encoding: This allows the model to recognize the position of each point in the sequence, 

crucial for maintaining the order of data in sequence processing; 
• Transformer encoder layer: This layer, which can be stacked, forms the encoder part of the 

Transformer, essential for processing the sequence data;  
• Modify the Transformer model: Adaptations are made so the model can take sequences of curve 

data as input and predict the desired geometric outputs; 
• Train the model: The model is trained with a batch size of 32 and over 100 epochs to ensure 

adequate learning. 
• Evaluation of the model: Performance is assessed on a test set to gauge the effectiveness of the 

model under evaluation conditions; 
• Fine-tuning and Optimisation: Depending on initial results, adjustments are made to the model’s 

architecture, training parameters, and learning rate to optimize performance.  

3 Multi-objective Optimisation for Free-Form Morphology 
Based on the tuned Transformer model, given the x-coordinate, y-coordinate, z-coordinate, and position 
parameter of the points, the NURBS curves meet the restrictions of the GLT and can be interpolated 
through curvature, vector_x, vector_y, and vector_z. In this case, three curves are selected to patch the 
free-form prototype surface in Figure 3 (a), which is arrayed to generate the surface shown in Figure 3 
(b).   

  

(a) Prototype surface (b) Array surface 

Figure 3 Example surface 

3.1 Strain Energy for Structural Rationality 
The optimisation method and objectives for structural mechanical rationality have a direct impact on 
the outcome of the morphology. The optimal objective is commonly set as displacement, stress, strain 
energy and others, and displacement and stress are vectors that reflect the structure's local 
characteristics, whereas stain energy is scalar.  
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The determination of the interrelationships between mechanical properties is a critical issue to address 
during the morphology creation process. The structural balance equation is: 

𝐹𝐹 = 𝐾𝐾 ⋅ 𝛿𝛿 (3) 
F – Force vector of structure nodes 
K – Structural stiffness matrix 
𝛿𝛿 – Displacement vector of the structure 
When the structure is subjected to small elastic deformation, the strain energy 𝑈𝑈 is expressed as: 

𝑈𝑈 =
1
2
𝐹𝐹𝑇𝑇𝛿𝛿 (4) 

Eq (4) deduces the relationship between strain energy and structure internal force. Research has 
demonstrated that when strain energy is selected as the objective function, as the strain energy of the 
structure decreases, not only does the stiffness of the structure increase, but the bending moments are 
greatly reduced, increasing the ultimate load capacity. Assuming that the load is constant, the 
structure's strain energy is proportional to the displacement of the structural nodes; that is, decreasing 
the displacement results in decreasing the strain energy. The smallest strain energy, smallest structural 
displacement, and largest structural rigidity are all mutually unified. 
The strain energy is a scalar, and its value can be thought of as the sum of the strain energies of all the 
elements in the structure. Besides, the strain energy is unrelated to the selected coordinate system. In 
the global coordinate system, the strain energy equals the strain energy in the local coordinate system. 
In complex structure systems, the finite element method is commonly used to divide the structure into 
several elements when calculating them. 

𝑈𝑈 = �𝑢𝑢�𝑖𝑖

𝑁𝑁

𝑖𝑖=1

(5) 

Where 𝑢𝑢�𝑖𝑖 is strain energy of every element, 𝑁𝑁 is total number of the elements in the structure  

3.2 Multi-objective Optimisation for Free-form Morphology 
To conduct multi-objective optimisation for free-form surface in Figure 3, the optimal model can be 
expressed as a nonlinear function on multidimensional space formed by vector 𝑃𝑃: 

𝑚𝑚𝑚𝑚𝑚𝑚 �
𝑈𝑈(𝑃𝑃)
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝜎𝜎

(6) 

Finding the minimum of 𝑈𝑈(𝑃𝑃)  can be seen as solving the extreme value problem for nonlinear 
multivariate functions. The solution to the extreme value problem can be achieved by a one-
dimensional search, which means the direction of descent of the objective function 𝑈𝑈(𝑃𝑃), which is used 
to adjust the optimisation variables 𝑃𝑃 to gradually converge to the optimal solution. 
In the given free-form surface, the three curves are divided into 4 control points and 22 control points, 
respectively. The optimisation variables are chosen as the z-coordinate of the two control points of the 
two side curves and the weights of the 11th and 12th control points, and the optimal results are shown 
in Figure 4. The optimal value for the mass remained within a narrow range, indicating a consistent 
reduction of about 3.6% from the original value. The curve's trend, displaying convergence in oscillation, 
underscores the effectiveness of the multi-objective optimization process. The optimal stress value 
achieved was 0.005, marking a substantial decrease from the original value of 0.013. The results 
fluctuated within a range of 0.005 to 0.011, with a minimum reduction of 15%. While the reduction in 
strain energy under gravity load—from 0.02 to 0.018—was modest, the results for the mesh load were 
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more dramatic, with a decrease from nearly 3.5 to 1.1, corresponding to a 68% reduction. The visualised 
optimised results and comparisons of the initial, and 60th steps are compared in Figure 5 and Figure 6.  

  
(a) Mass optimisation (b) Stress optimisation 

  
(c) Strain energy of gravity load optimisation (d) Strain energy of mesh load optimisation 

Figure 4 Optimisation results 

 
 

 

(a) Displacement front (b) Displacement perspective (c) Displacement top 

Figure 5 Displacement of original morphology 

  
 

(a) 60-step front view (b) 60-step perspective view (c) 60-step top view 

Figure 6 Displacement after 60-step evolution 
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4 Discussion  
The Transformer model has demonstrated exceptional effectiveness in handling the complexities 
inherent in free-form designs. Its capacity to process sequential 3D geometric data enables accurate 
predictions of structural forms, showcasing its potential beyond traditional natural language processing 
tasks and extending its utility to spatial and geometric data analysis. Despite some variation between 
predicted and actual values, this does not significantly detract from the Transformer’s utility in 
predictive tasks. These discrepancies are largely due to the inherent complexities of free-form 
structures and the challenges in capturing the nuances of three-dimensional geometry through 
machine learning.  
The integration of evolutionary algorithms was pivotal in refining the Transformer-generated designs to 
meet specific structure performance criteria. Significant improvements were observed in multi-
objective optimization concerning mass, stress, and strain energy, validating the multifaceted 
capabilities of these algorithms. The evolutionary approach effectively enhanced the exploration and 
exploitation phases of the optimization process, leading to more efficient and robust design solutions.  
Beyond technical validation, the findings carry meaningful implications for architectural and 
construction practice. The proposed framework offers a scalable tool for early-stage design automation 
of free-form timber structures, helping architects and engineers reduce costly design iterations. By 
minimizing mass and improving structural efficiency, it contributes to sustainable building practices. 
The ability to align ML-driven form-finding with material and fabrication constraints supports more 
precise, constructible outcomes—particularly valuable for digital fabrication and robotic timber 
assembly workflows. 
However, this research faces several notable limitations that could influence the applicability and 
effectiveness of the proposed methodologies in various free-form structure scenarios. Firstly, the 
quality and quantity of data are crucial for training the machine learning models, and any inadequacies 
in this regard can significantly impair model accuracy. Ensuring a comprehensive and high-quality 
dataset is paramount for achieving reliable predictions and robust optimization results. 
Furthermore, the generalizability of the model when applied to structures or materials different from 
those used in this study is a concern. Adapting the model to accommodate larger or more intricate 
designs necessitates complex modifications, which may pose challenges in terms of computational 
resources and the need for tailored adjustments. This highlights the importance of further research into 
developing more adaptable and scalable models that can handle a broader range of free-form structure 
designs without compromising performance. 

5 Conclusions  
This study represents a significant advancement in the field of architectural design by integrating 
machine learning and evolutionary algorithms to generate and optimise free-form morphology. This 
approach successfully addresses the dual challenges of adhering to building material limitations and 
enhancing structural stiffness, which are critical in the construction of viable and sustainable 
architectural structures. By extracting geometric information from free-form surfaces and translating 
these into sequential data, the use of advanced machine learning techniques is facilitated, specifically 
the Transformer model, to predict and optimise structural forms. This approach not only streamlines 
the initial stages of design but also ensures that the final forms are both feasible and structurally 
rational. despite some deviations from the actual values, the Transformer's predictive outputs are 
promising. The model has effectively demonstrated its applicability to geometric form prediction in the 
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context of free-form surface analysis, marking a significant step forward in the intersection of machine 
learning and architectural design. This research contributes to the digital transformation of architectural 
design by providing a data-driven, automated workflow for generating and optimizing free-form 
structures. By bridging the gap between aesthetic design and practical construction constraints, our 
methodology offers a scalable framework for the design of complex geometries, ensuring that the final 
structures are not only visually compelling but also structurally efficient and constructible. The 
integration of ML and optimization in this work represents a significant step forward in the field of digital 
construction, paving the way for more sustainable and innovative architectural solutions. Still, there are 
limitations in the application of the methodology. The primary constraint is the reliance on the precision 
of 3D geometric models as learning inputs, which may not capture the full complexity of real 
construction projects. Further research is needed to expand the capabilities of the algorithms used, 
incorporating more dynamic and real-time data inputs involving variations in material properties, 
construction tolerances, and environmental impacts. The oscillatory convergence patterns of the multi-
objective evolutionary optimisation suggest that the stability of the algorithms could be further 
improved to ensure smoother progression towards the optimum. 
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