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Indoor environmental quality (IEQ) refers to the conditions within a building and is a key factor 
in occupant comfort. To improve these IEQ, heating, ventilation, and air-conditioning (HVAC) 
systems are currently being used in indoor environments in buildings. However, inefficient 
systems to improve IEQ lead to high energy consumption, which is directly connected to 
building-energy-related CO2 emissions. Unfortunately, these emissions are inextricably 
linked to global climatic issues. Data-driven technologies show a positive future in solving 
climate-related targets. Technologies such as artificial intelligence (AI), machine learning 
(ML), and digital twin (DT) are being explored to improve energy performance while improving 
IEQ. Therefore, this paper aims to systematically review the applications of data-driven 
technologies for improving IEQ and energy efficiency. A comprehensive literature search 
using the PRISMA method to retrieve publications related to data-driven and IEQ. The findings 
highlight common areas of data-driven applications in IEQ, including the detection and 
prediction of IEQ factors, IEQ controls, building energy management, and HVAC system 
controls. Commonly used ML and AI techniques identified, including deep learning, neural 
networks, KNN, SVM, decision trees, and multi-objective algorithms. AI in combination with 
BIM and IoT techniques was employed in the studies to develop DT models for real-time 
building monitoring. Further, the review highlights barriers to data-driven and digitalisation 
approaches in buildings that impede the robust approaches to IEQ improvement. 
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1. Introduction 
Most people live in urban areas and work in an office environment (Al Horr et al., 2016), and people 
spend up to 90% of their lives indoors (Baek, Park, Park, Le, & Chang, 2023). Given this people’s lifetime 
indoors, providing a comfortable, healthy, and affordable indoor environment is crucial for a standard 
habitable indoor environment (R. Zhao, Sun, & Ding, 2004). To achieve a high level of indoor environment 
quality (IEQ), previous studies have identified that the human perception of the indoor environment is 
affected by four fundamental environmental factors: air, acoustics, visual, and thermal environment 
(Sam Kubba, 2017). Indoor air quality (IAQ) is usually affected by poor air quality, poor lighting quality, 
moulds and bacteria growth inside the building (S. Kubba, 2010), which can cause severe health 
conditions such as allergies, respiratory problems, and cognitive function reduction (S. Kubba, 2010). 
Acoustic quality usually refers to a condition without low or high noise levels or discomfort caused by 
sound irritation (Vardaxis, Bard, & Persson Waye, 2018). The visual quality depends on factors such as 
the quality of the indoor environment lighting, visual privacy, outdoor connections, and views (Tekce, 
Artan, & Ergen, 2021). Thermal environmental quality refers to the thermal comfort level. Extreme 
thermal environment conditions, such as too cold or too hot, are usually identified as discomfort 
thermal conditions (Q. Zhao, Lian, & Lai, 2021).  

Focusing on these fundamental factors, heating, ventilation, and air conditioning (HVAC) systems, 
lighting systems, acoustic insulation systems and systems to improve visual comfort are used to 
maintain IEQ in buildings.  These systems are responsible for maintaining a comfortable indoor 
environment. However, despite maintaining a comfortable indoor environment, these systems heavily 
influence the energy consumption of buildings. Previous studies highlighted those inefficient systems 
as the core reason for the significant energy consumption (H. H. Hosamo, 2023), which leads to energy-
related climatic issues (United Nations, 2022). Building construction and operation currently report for 
nearly 40% of global energy-related CO2 emissions (United Nations, 2022). To prevent further global 
climatic issues, many governmental and inter-governmental bodies endorsed climate targets (IPCC, 
2018). Introducing digital technologies is a step towards a greener planet (Ogundiran, Asadi, & da Silva, 
2024), and evidence shows that digitalisation technologies are accelerating these climate targets 
(Opoku, Perera, Osei-Kyei, & Rashidi, 2021). Therefore, globally influenced nations identify the need to 
embrace the transition towards digitalisation in the construction industry (Xie, Xin, Lu, & Xu, 2023).  

1.1 Literature review 
Due to Industry 4.0 technological achievements, different industries are being taken over by artificial 
intelligence (AI) boost (Paige Wenbin Tien, Wei, Darkwa, Wood, & Calautit, 2022). With the innovative 
methods of data exchanges between the digital and physical world, these data-driven methods became 
popular in many industries (University of Wollongong Australia, 2025). This AI boost opened up a new 
society with automation, where many tasks of humans are automated (Coeckelbergh, 2020). The 
integration of these trending data-driven technologies, such as AI, machine learning (ML), and digital 
twin (DT), in improving IEQ in buildings while maintaining energy management and energy efficiency (H. 
H. Hosamo, 2023; H. H. Hosamo, Svennevig, Svidt, Han, & Nielsen, 2022; Van Thillo, Verbeke, & 
Audenaert, 2022) is a trending topic in the built environment (BE) sector. Artificial intelligence intends 
to create a synthetic brain called an autonomous agent, focusing on an intelligent program which does 
tasks like humans (Jo, 2021). AI can learn from the environment and make decisions accordingly to 
maximise the probability of reaching a given objective (Cerulli, 2023). AI is a human-made product with 
computation capacity, data availability, and algorithm development capacity to process an intelligent 
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task. (Cerulli, 2023). Machine learning, also known as statistical learning, is an approach that enables 
computers to learn from data and make predictions without definite programming (LeCun, Bengio, & 
Hinton, 2015). ML can be identified as a technique that lies between statistics, computer science and 
AI (Cerulli, 2023). Digital twin solutions have already been explored and deployed in various domains. 
(Boschert & Rosen, 2016). The DT is viewed as a model which investigates and visualises the condition 
of a real-world physical object from its digital representation (virtual or digital space) (Crespi, Drobot, & 
Minerva, 2023). In the BE, the DT is viewed as a key platform for real-time monitoring and control in 
building systems (Lu, Xie, Parlikad, & Schooling, 2020). DT enables automated controls to adjust HVAC 
and other services to enhance occupants’ comfort by integrating with the Building Automation System 
(BAS) (Pan et al., 2023).  

1.2 Review necessity 
Despite the positive impact of these data-driven technologies, the application of these technologies in 
the built environment sector is a highlighted barrier due to the high level of data requirements (Crespi et 
al., 2023) to produce meaningful outcomes. However, reviews that discuss ranges, including the 
building areas, suitable data-driven applications, the real-life applicability of these data-driven 
applications, and barriers to data-driven applications in real-life building indoor environments are 
missing. Therefore, critical investigation is needed to determine the suitable data-driven technologies 
to improve IEQ.   

1.3 Objectives, contribution and structure of the present review 
To address the research gaps, this study examines the application of AI, ML, and DT in enhancing IEQ in 
buildings by reviewing previous studies in BE conducted over the past decade. The review is carried out 
under four objectives: 1. To critically review the data-driven technology involvement in IEQ 
improvement, 2. To critically investigate the focused IEQ factors in the current literature, 3. To critically 
investigate data-driven applications for improving IEQ and energy efficiency in buildings, 4. Applicability 
and barriers of these data-driven applications in real building environments. The study is presented as 
follows. In Section 1, the introduction to the selected area of review, in Section 2, the literature review 
to establish the need for the review objectives, in Section 3, the methodology of the systematic literature 
search presented, as well as an explanation of the review methods with selection, inclusion and 
exclusion criteria for the work reviewed. In Section 4, the authors provide in detailed review of results, 
discussion aligning with the review objectives. Section 5 highlights the real-life applications and barriers 
of these data-driven applications in improving IEQ. The limitations of the study are discussed in Section 
6, and the review is concluded in Section 7. 

2. Review Methodology 
This review aims to identify the status of data-driven applications in improving IEQ while optimising 
energy efficiency through a systematic literature review (SLR). To achieve the goal of SLR in this study, 
the Preferred Method of Systematic Reviews and Meta-Analysis (PRISMA) 2020 protocol is used. The 
step-by-step process of the SLR using the PRISMA protocol is shown in Figure 1. The PRISMA diagram is 
‘an evidence-based minimum set of items for reporting in systematic and meta-analysis’ (Page et al., 
2021). The literature on data-driven applications in improving IEQ was identified in Scopus and the Web 
of Science databases. Keywords used included “Artificial Intelligence”, “Machine Learning”, “Data-
driven”, Digital Twin” and “Indoor Environmental Quality”, which were mostly used in related studies and 
covered the core information in this area.  
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Figure 1: PRISMA diagram 

Based on the search results, peer-reviewed journal publications between 2015 and 2025 were selected 
as introductions of data-driven technologies to the indoor environments of buildings increased in recent 
years. Additionally, English-only publications were used as inclusion criteria for the language.  Initially, 
the Web of Science and Scopus databases produced a total of 446 records. These records were 
carefully screened in Screening 01 to eliminate duplicates, resulting in 324 records. The titles and 
abstract review were conducted as Screening 02, and 163 journal articles were selected, removing 
irrelevant articles using exclusion criteria ‘building elements focused publications’, irrelevant articles, 
and review articles. After carefully reviewing the title and abstract, and reading the theoretical 
framework, findings, and conclusions, 11 articles were removed from the records. Subsequently,152 
journal articles were considered for Bibliometric analysis, Content analysis and Full paper review.  
These articles comprised the AI, ML, and DT applications to improve IEQ in buildings. Figure 1 elaborates 
the inclusion and exclusion criteria to decide the most relevant and suitable studies from the selected 
databases. The results of the SLR are discussed in detail in Section 4, aligning with the review objectives. 
Figure 1 further elaborates on the evaluation of studies and analysis, and synthesis for the SLR. 

3. Review results and Discussion 
3.1. Bibliometric analysis 

i. Analysis of Publication by Country 

The selected 152 peer-reviewed journal articles were considered for the bibliometric analysis. As shown 
in Figure 2, 32 countries were identified, and countries such as China, the USA, South Korea and Italy 
have relatively higher numbers of publications. With 33 publications from 2016 to 2025, China ranked 
as the top country, while the USA has only 22 publications, followed by South Korea and Italy, which 
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ranked 3rd and 4th with 14 and 12 publications, respectively. Notably, Oceania countries such as 
Australia and New Zealand exhibit considerably insignificant studies in the relevant area.  

 
Figure 2: Heat map of the publications by country and year 

ii. Analysis of Publication by Year 

Journal publications from 2015 to 2025 were selected for the review as introductions of data-driven 
technologies to buildings' indoor environments have increased in recent years. As shown in Figure 2, the 
keyword search found a high density of articles from 2018 to 2025. Figure 2 further shows a significant 
increase in publications from 2022.  

3.2. Content Analysis 

i. Focused IEQ factors in studies  
Based on the comprehensive review of the selected studies, data-driven techniques and approaches 
are mostly used to improve air quality, thermal aspects, and energy efficiency. As shown in Figure 3, 
other factors, such as acoustics, lighting, and ergonomics in an indoor environment, received notably 
less attention from the researchers in the relevant area. This highlights the need for more research on 
these negligence factors, as the combination of all these factors defines the IEQ. 

i. Data-driven applications in studies  
Different data-driven approaches were used based on the content analysis of the selected articles. Of 
the 152 records, 34 papers highlighted AI technology, 27 used data-driven terminology, 10 focused on 
DT applications, and 75 focused on ML applications (See                         Figure 4).  
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Figure 3: Focused IEQ factor in the selected studies                           Figure 4: Data-driven involvement in publications 

3.3. Full paper review 
These Data-driven approaches were broadly used for IEQ condition detection and/or prediction, energy 
management, energy optimisation, and energy efficiency. The full paper review of the study identified 
the use areas of the selected articles as IEQ Condition detection/ prediction, IEQ condition control, 
Energy management, HVAC controls, Real-life Applications and barriers in data-driven applications. 
Figure 5 was generated using R Studio version 4.2.  

 
Figure 5: Network visualisation of keywords 

This was used to construct and display relationships between data-driven technologies, IEQ 
parameters, and application types (i.e., prediction, detections or controls). The three group words 
“Machine learning”, “Artificial intelligence”, and “Air quality” have the most density of links and 
networks. Subsequently, “Thermal comfort” and “Occupancy” were the most connected cluster words. 
This provides an overview of the current research focus from the IEQ studies selected for the review. 
Most focused IEQ factors in the research domain are air quality, thermal comfort, and occupancy, 
despite having other contributing factors which determine the overall IEQ.  
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i. IEQ Conditions detection/prediction 
a) Techniques for IAQ conditions  

Data-driven approaches have been applied to IEQ condition detection and prediction in built 
environments. Symonds et al. (2016) used the ML method for the meta-model development for 
estimating overheating and air pollution in an England-wide indoor environment using the supervised 
learning methods feed-forward neural networks (NN) and radial basis function (RBF). Support vector 
regression (SVR) was compared with the NN system, and NNs showed 50% better overall performance 
than SVR. Another study used an SVM-based method for the detection and sampling of air particles 
using false positive detection (Wu et al., 2017). Liu et al. (2018) explored the potential relationship 
between IAQ and the concentration of airborne culturable fungi using an artificial neural network with 
ten hidden nodes (ANN-10) and SVM. The results showed that the ANN outperformed the SVM (64% of 
the accuracy) with an accuracy of almost 90% (SVM<ANN-10<90%). In 2019, Khazaei et al. used an MLP 
Neural Network to predict CO2, resulting in a CO2 concentration of 1465- 1510 ppm when the CO2 
concentration set point in ASHRAE 62 is 1000 ppm. Table 1 presents a part of the articles reviewed based 
on data-driven approaches and their accuracy. 

Table 1: Data-driven and algorithms applications in the studies 
Reference Data-driven approach/ 

Algorithms 
Accuracy/Results 

(Symonds et al., 2016) NN, SVR NN models gave 50% better overall performance than 
SVR 

(Choi & Yeom, 2017) Decision Tree (DT), Stepwise Stepwise= 35.99%, DT= 95.87%  
(Wu et al., 2017) SVM Sizing accuracy:93% 
(Liu et al., 2018) SVM, ANN SVM:64%, 

SVM<ANN-10<90% 
(Khazaei, Shiehbeigi, & Kani, 
2019) 

MLP Neural network CO2 concentration: 1465-1510PPM (CO2 concentration 
set point in ASHRAE 62 is 1000PPM) 

(Peng, Nagy, & Schlüter, 2019) GNB, DT, C-SVC, Multi-
Layer (MLP) 

Energy saving = 4% to 25% as compared to static 
temperature set points 

(Song et al., 2019) HAGRU neural network Predictive accuracy: 98.4% 
(Jayathissa, Quintana, 
Abdelrahman, & Miller, 2020) 

RF classifier 64%: thermal, 80%: light, 86%; noise 

(Pigliautile et al., 2020) LDA, KNN, DT, NB, SVM, and 
RF 

 

(Salamone et al., 2020) DT, KNN, LDA, RF, NB, SVM, Average accuracy of DT, LDA, and RF~to 50%, NB=76%, 
SVM= 76%-84%, KNN= 68% 

(P. W. Tien, Wei, Calautit, 
Darkwa, & Wood, 2020) 

CNN-based deep learning 80.62%  

(Z. Wang et al., 2020) PCA, LR and SVM Prototype accuracy: 99.5% 
(Floris, Porcu, Girau, & Atzori, 
2021) 

DNN-Medium-cost 
computational models 
(Bagged tree and GPRI) 

Prototype accuracy: 99.5% 

(Tagliabue et al., 2021) BIM, IoT, Digital Twin  
(Abdel-Razek, Marie, Alshehri, & 
Elzeki, 2022) 

KNN, AO-ANN (BP), 
Decision Tree (DT) 

KNN: 99.5% best performance 

(Elnour et al., 2022) NN, SVR, KNN, DT The NN-based model outperforms other ML models by 
around 0.06 between the actual and the predicted 
values 

(X. Wang & Dong, 2023) AI-powered cameras and 
CNN, Shallow artificial 
neural network predictive 
models, ANN 

Energy consumption: 0.6% and 29%, Thermal comfort 
level: 0% to 58.8%, CO2 concentration below 1000ppm, 
59.7% for the conventional window control strategy and 
89.25% from the proposed model 

(Andersen et al., 2024)  SVM, LR, RF, KNN, NB, and 
XGBoost 

Model performance: very well (all 9 metrics in high 
performing range) 
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(Banihashemi, Weber, Deghim, 
Zong, & Lang, 2024) 

IoT, RF, XGBoost, and DFNN, 
CDBLSTM (a hybrid of CNN 
and bi-directional long 
short-term memory (Bi-
LSTM), BP, SHAP  

DFNN and CDBLSTM had high standard deviations of 
single features, compared to the non-sequential 
models. 

(H. Hosamo & Mazzetto, 2025) Computer vision-based 
detection (YOLOv5) 

Occupancy-based strategy: 50% of energy saving, 
Temperature-based control: 37.27% energy saving,  

(Sood et al., 2025) XGBoost, RF, SVM, NSGA-II over 99% 
(Xu et al., 2025) RF Building energy consumption= 29.46%, Indoor thermal 

comfort= 10.46%, Daylighting performance= 65.56% 
Note: ANN=Artificial neural network, AO-ANN=Adam optimiser-artificial neural network, BIM=Building information modelling, Bi-LSTM=bi-
directional long short-term memory , BP=back-propagation, BT=Bagged tree, CDBLSM=Convolutional deep bidirectional long-term memory, 
CNN=Convolutional neural network, C-SVM=C-Support Vector Classification, DFNN=Dense feedforward neural network, DNN=Dense neural 
network, DT=Decision tree, GNB=Gaussian Naïve Bayes , GPRI=Gaussian process regression, HAGRU=Hierarchical attention-gated recurrent 
unit, IoT=Internet of things, KNN=K-nearest neighbours, LDA=Linear discriminant analysis, LR=Logistic regression, MPL=Multilayer perceptron, 
MLP=Multi-Layer Classification, NB=Naïve Bayes, NN=Neural network, NSGA-II=Non-Dominant Sorting Genetic Algorithm-II, PCA=Principal 
component analysis, RF=Random Forest, SHAP=Shapley additive explanations, SVM=Support vector machine, SVR=Support vector 
regression, XGBoost=Extreme Gradient Boost  

Many studies were conducted using data-driven methods to monitor the particulate matter (PM) 
concentration in the indoor environment. Marques and Pitarma (2020) used IoT to monitor and assess 
PM. The developed model is a health information system to enhance living environments. Another study 
developed a practical framework for predicting residential PM concentration using land-use regression 
and machine learning methods. Woo et al. (2022) used deep learning to forecast the effect of real-time 
indoor PM 2.5 on peak expiratory flow rates (PEFR) of asthmatic children in Korea. Dai et al. (2023) 
conducted a study on predicting urban residential indoor PM 2.5 concentration employing a Large-scale 
spatiotemporal deep learning method. Some authors explored methods of predicting PM with low-cost 
data and ML techniques (Lagesse et al., 2022). A study in China explored the influencing factors on 
indoor PM 2.5 of an office building based on statistical and ML methods (Li et al., 2023c). In 2024, Lu et 
al. (2024) studied enhancing PM 2.5 prediction by applying ML and spatial modelling approaches. 

b) Techniques for Thermal comfort conditions 
In the review studies, several models for thermal comfort prediction have been proposed and tested. 
Choi and Yeom (2017) developed a data-driven thermal sensation prediction model to investigate the 
relationship between the thermal sensation and skin temperatures as a function of local body skin 
temperatures in an experimental chamber using a DAQ system (Data acquisition system), designed by 
LabVIEW, which was installed in the desktop computer for the data collection and recording. For 
accuracy estimation, the decision tree (DT) analysis model (J48) by WEKA (a data mining software) was 
used. The result showed an accuracy of 95.87% for the DT model. Another study developed a Personal 
Comfort Model utilising machine learning to predict individuals' thermal preferences using occupant 
heating and cooling behavior (Kim et al., 2018). The study used several ML algorithms to solve 
multiclassification complications of an occupant's thermal preference.  Algorithms such as 
classification tree (CTree), Gaussian process classification (GPC), Gradient boosting method (GBM), 
Kernel support vector machine (kSVM), Random Forest (RF), and Regularised logistic regression (regLR). 
The results showed a median accuracy of 0.73 for the best performance algorithm, while a Conventional 
model's accuracy was 0.51. Salamone et al. (2018) developed an integrated method to assess Personal 
Thermal Comfort using user feedback, IoT and ML techniques. The study tested different ML methods 
to identify the optimum algorithm, including logistic regression, linear discriminant analysis and non-
linear algorithms (K-nearest neighbours, Classification and regression trees, Gaussian naïve bayes, 
Support vector machine). Classification and regression trees (CART) were most accurate among other 
tested algorithms.  Salamone et al. (2020) studied personal thermal comfort perception in real and 
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virtual environments, assessing the visual stimuli. The machine learning applications they used were 
DT, KNN, LDA, RF, NB, SVM, and KNN. The results showed that the average accuracy of DT, LDA, and RF 
is close to 50%, NB of 76%, and SVM of 76%-84%, while KNN shows a performance of 68%. On the other 
hand, a study researched determining occupant dissatisfaction (Kent et al., 2021) using principal 
component analysis (PCA) and SVM. The goal was to determine the best IEQ parameter to predict overall 
space assessment, and the findings showed 90% classification for occupant satisfaction with the 
overall workplace. However, the study suggested leveraging space designs that ensure privacy and 
sufficient spaces to mitigate occupant dissatisfaction, irrespective of all other IEQ conditions. Another 
study on thermal comfort prediction and CO2 concentration developed the extreme machine learning 
(EML) model (Hou et al., 2022). The EML model was optimised by the grey wolf optimiser (GWO) and 
resulted in a reduction of CO2 concentration and PMV within acceptable limits.  

c) Techniques for multi-objective optimisation 
Martínez-Comesaña et al. (2021) researched the use of optimised multi-layer perception (MLP) neural 
networks for spatiotemporal estimation of indoor environmental conditions of a building. Again, 
Martínez-Comesaña et al. (2022) employed an optimised extreme gradient boosting algorithm to assess 
real-time Indoor temperature, RH, and CO2 concentration. Multi-objective generic algorithm NSGA-III 
was employed for estimation and estimated indoor temperature and RH with relative faults below 6% 
and CO2 levels below 10%. In thermal monitoring, Rida et al. (2023) used machine learning-based 
human thermo-physiology modelling enhanced with computer vision. Employing this AI-integrated 
system, they developed a framework that enables contactless human thermal monitoring. Recently, 
researchers utilised ML applications such as the Instance-based transfer learning method, and SMOTE 
and SHAP integrated methods are used in thermal comfort prediction studies (Li et al., 2024a & Li et al., 
2025). 

d) Techniques for occupant detection 
In the area of occupant detection in buildings, several studies have been conducted on the use of these 
data-driven applications. Abdelrahman et al. (2022) used classification algorithms such as K-nearest 
neighbours (KNN), Hybrid Adam optimiser-artificial neural network-back-propagation network (AO-
ANN (BP)), and decision tree (DT) to predict room occupancy based on thermal comfort parameters. 
The results indicated that the KNN showed the overall best performance with 99.5%. On the other hand, 
Aliero et al. (2022) tried different ML techniques to predict room occupancy non-intrusively. Another 
study developed a multimodal framework for smart building occupancy detection (Abuhussain et al., 
2024). Anik et al. (2023) attempted to develop smart buildings by creating automated occupant profiles. 
The study explored the ML-enabled approach for user persona generation in smart buildings. Andersen 
et al. (2024b) proposed a model to detect occupancy in residential buildings using supervised learning. 
They explored the model's generalisability using SVM, Logistic Regression, RF, KNN, NB, and eXtreme 
Gradient Boosting (XGBoost) algorithms. They conclude that the model succeeded with all 9 metrics in 
the high-performing range. Banihashemi et al. (2024) researched occupancy detection using non-
intrusive indoor environmental data and ML techniques in two double-occupied office rooms at a 
university building in Germany. They employed IoT technology as a method to collect indoor 
environmental data. RF, XGBoost, and a Dense neural network (dense feedforward neural network 
(DFNN)) were trained on the data set. To compare the model performance, they used CDBLSTM 
(convolutional deep bidirectional long-term memory), a hybrid of CNN and bidirectional long short-term 
memory (Bi-LSTM), and to optimise hyperparameters, they used Random and Bayesian optimisation. 
They utilised SHAP (Shapley additive explanations) to identify feature importance in the model. The 
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findings showed that DFNN and CDBLSTM had the highest standard deviations of single features 
compared to the non-sequential models. 

e) Digital twin involvement 
On the other hand, data-driven technologies such as IoT, BIM (Building Information Modelling) and 
digital twin received notable attention from researchers in the BE domain. In 2022, Abdelrahman et al. 
(2022) modelled personal thermal comfort using digital twin technology. They used occupant 
preference prediction with BIM-extracted spatial-temporal proximity data from the Build2Vec 
application. Build2Vec was used BIM-extracted graph into a multi-dimensional vector space to extract 
similarities between different spatial objects and locations. They utilised classification algorithms, K-
nearest neighbours (KNN), Hybrid Adam optimiser-artificial neural network-back-propagation network 
(AO-ANN (BP)), and Decision Tree. The test results showed a 14%–28% accuracy improvement over a 
conventional model. Desogus et al. (2023) developed a framework to monitor, visualise and assess 
building thermal comfort using the BIM-based digital twin (DT) model approach.  In 2024, Opoku et al 
developed a BIM and IoT-enabled DT model for indoor condition monitoring indoor environment utilising 
a university library in Australia (Opoku et al., 2024). Furthermore, Hu and Assaad (2024) developed a 
BIM-enabled DT framework to autonomously monitor indoor environmental conditions and provide 
real-time visualisation. 

(ii) IEQ Conditions control, Energy management and HVAC controls 
In the context of energy management, HVAC controls and IEQ condition control, various data-driven 
techniques have been proposed and tested. In 2017, Konis and Annavaram developed the occupant 
mobile gateway to develop an occupant-aware energy management system. They employed a logistic 
regression model in R machine learning computing software for the data analysis and EnergyPlus 
software to quantify energy usage, resulting in an error below 10% (Konis and Annavaram, 2017). 
Another study developed a system to learn individual temperature preferences using NN for occupant-
centric building indoor climate controls (Peng et al., 2019), modifying HVAC systems to react 
automatically to individual temperature preferences of occupants. The used learning models were 
Gaussian naïve bayes (GNB), Decision tree (DT), C-support vector classification (C-SVC), and Multi-
layer (MLP) classification for temperature preferences, providing an energy saving of between 4% and 
25% as compared to static temperature set points of HVAC systems. Du et al. (2021) developed a 
method of identifying suitable air temperature levels in Chinese air-conditioned buildings based on a 
data-driven model. On the other hand, Floris et al. (2021) proposed an IoT-based smart building (SB) 
solution for managing the indoor environment. They employed DNN-Medium-cost computational 
models, bagged tree and Gaussian process regression (GPRI), which resulted in an accuracy of 99.5% 
of the prototype. Elnour et al. (2022) developed an NN-based control system for optimising BAS (building 
automation system) and BMS (building management system). The study compared the NN-based 
model with other models such as SVR, KNN, and DT. The result showed that the NN-Based model 
performs better than other ML models, with an average root mean square error (RMSE) of around 0.06 
between the actual and the predicted values. Utilising the extreme machine learning (EML) model 
optimised by the grey wolf optimiser (GWO) algorithm, Hou et al. (2022) developed a hybrid prediction 
model to predict CO2 level, Thermal comfort level and energy consumption. The results showed 14.34% 
of energy saving after the model was implemented.  

In recent years, researchers have utilised AI techniques for building control systems for energy 
management. Using AI techniques, Zhu et al. (2022) developed a dynamic sensing and control system 
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for a non-uniform indoor environment. In 2023, Faiz et al. conducted research on energy modelling and 
predictive control of environmental conditions for BEMS (building energy management system) utilising 
AI and ML (Faiz et al., 2023). Faulkner et al. (2023) developed a system for fast prediction of indoor 
airflow distribution. The authors developed this system utilising synthetic image generation AI.  

Furthermore, from the reviewed studies, it can be identified that the researchers tried several methods 
in the indoor environment climate control. Incorporating reinforcement learning techniques, Kim and 
Moon (2023) developed a system to control indoor climate based on outdoor air PM. Another study in 
2023 developed a smart HVAC control system for a university classroom in a subtropical climate using 
Computer vision techniques (Lan et al., 2023). Li et al. (2023a) developed a calibration approach for 
HVAC systems at the operational location without removing or disrupting the system’s function. The 
authors utilised Bayesian inference incorporating validation of virtual sensors. The same authors 
developed an algorithm for smart environmental control using an adaptive multi-objective particle 
swarm optimiser-grey wolf optimisation algorithm (Li et al., 2023b). They focused on improving IAQ and 
thermal comfort while enhancing energy efficiency through this system.  

4. Real-life applications and barriers 
Most developed models and algorithms were created under controlled environmental conditions and 
various criteria, limiting their applications to selected case studies. Moreover, many of these 
developments require further validation to achieve broader real-world applicability. The scope of the 
studies was constrained by the data sample size. Numerous studies suggest that to enhance model 
accuracy and relevance, larger datasets incorporating diverse environmental conditions must be 
included. Outdoor environmental conditions are crucial for improving indoor environmental quality 
(IEQ). The IEQ is influenced by outdoor microclimatic conditions and building morphology. Therefore, 
more research targeting this area is necessary to enhance IEQ. Many proposed models could be 
improved by utilising advanced data collection methods that integrate contemporary real-time 
techniques, such as sensors. This could enable more effective real-time monitoring of the factors 
affecting IEQ. Additionally, considerations of individual occupancy behaviour and physiological 
parameters incorporated into the developed models are currently lacking. The reliability of these 
models is uncertain, as additional guidance is needed for building managers regarding control methods.  

Furthermore, these data-driven technologies necessitate large volumes of historical data to train, test, 
and validate the models, helping to identify patterns in the data and provide more accurate predictions 
about future indoor environmental conditions. The review reveals that a significant challenge in using 
these data-driven techniques to develop predictive models lies in the availability of high-quality, reliable 
historical data. Inaccurate data leads to incorrect or ineffective predictions, since the models cannot 
learn the correct patterns. The review emphasised that even well- performing data- driven models may 
falter if they are trained inadequately, inaccurately, or unreliably. All these data-driven technologies are 
heavily reliant on the data provided, underscoring the need for well-curated, accurate datasets to 
ensure effective model performance. 

5. Limitations of the study 
The review limits its scope to studies published only from 2015 to 2025 and considers only peer-
reviewed journal articles. Additionally, English-only publications were used as inclusion criteria for the 
language.  Further to that review limits to Scopus and Web of Science databases. This selection 
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process may result in missing important research published outside these inclusion criteria, which 
could provide valuable context or insight.  

6. Conclusion 
Improving IEQ conditions inside a building is a crucial factor in occupant comfort. However, maintaining 
improved IEQ while optimising energy consumption is challenging. The data-driven technologies 
explored by researchers in the built environment to address these energy management and energy 
efficiency challenges while increasing IEQ. The review reveals that data-driven technologies have been 
primarily applied in several key areas within the built environment, such as air quality monitoring and 
prediction, thermal comfort prediction, occupant detection and behaviour modelling, energy efficiency 
and HVAC optimisation, building performance simulation and prediction, and smart building and digital 
twin technologies.  

Review results indicated that ML and AI algorithms were utilised to monitor and predict indoor air quality 
(IAQ) conditions, including CO2 concentration, air pollutants, and particulate matter (PM). Additionally, 
these algorithms were employed to predict and optimise thermal comfort in indoor environments and 
to non-intrusively detect occupant presence and behaviour. Furthermore, these data-driven 
technologies were used to enhance heating and cooling systems based on real-time indoor 
environmental conditions. The review highlighted that these systems increase energy efficiency by 
learning occupant preferences and automatically adjusting indoor environmental conditions.   

Commonly used AI and ML techniques to improve IEQ conditions and energy efficiency were deep 
learning, neural networks, RF, KNN, decision trees, multi-objective algorithms, XGBoost, and SVM. In 
addition to ML techniques, BIM and IoT techniques in combination with AI were being used to develop 
digital twin (DT) models. The DT models create a virtual replica of physical buildings for real-time 
monitoring and control of indoor environmental conditions. This, in turn, offers real-time visualisation 
of the indoor environment, helping energy management and increasing IEQ. In addition, EnergyPlus 
simulation was commonly used for energy modelling. 

However, factors such as acoustics, lighting, and ergonomics have received significantly less attention 
from researchers. This gap underscores the need for further investigation into these overlooked factors, 
as they collectively contribute to overall IEQ. Furthermore, the review emphasised the necessity of well-
curated, accurate datasets to ensure effective model performance. In conclusion, while data-driven 
technologies hold great potential, their success relies on the quality of the historical data upon which 
those models are built. 
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