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Construction inspection is an important aspect of project delivery in the Built Environment. 
However, on construction sites, the process of compliance checking is largely conducted 
manually. In person inspections have been found to have error rates of 20-30%. These 
inefficiencies have resulted in significant quality impacts, cost overruns and schedule 
delays. In the context of these challenges, coupled with the demand for remote inspections 
during the pandemic, there has been increasing research into digital technologies for the 
automation of construction compliance. However, to date, many developments happened 
in isolation focusing on narrow areas. There has been no overarching review available to 
consolidate the gamut of digital solutions that can be used in construction inspection, 
evaluate their practical applications and consider how they fit within the wider compliance 
workflow.  

To fill this gap, this paper conducted a scoping review to identify the key digital technologies 
with the potential to automate inspection tasks on construction sites. The study analysed 
136 papers published in the last five years to identify the development trajectories of digital 
solutions in construction compliance and to suggest possible directions in which certain 
technologies can be further applied to enhance construction compliance. 

The findings reveal key inspection themes where technology can enhance construction 
compliance namely defect detection, dimension measurement, and alignment. 
Additionally, technology stack i.e. combination of hardware and software most compatible 
to serve each inspection purpose was analysed. The study proposes a roadmap through 
technology-inspection matrices to guide commercial deployment and future research in 
underutilised tech combinations. 
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1 Introduction 

Construction inspection is a cornerstone of regulatory compliance and quality assurance across the 
built environment (Halder et al., 2023). These requirements span across project phases, including 
design briefs, functional performance, safety laws, environmental regulations, and quality standards 
(Amor & Dimyadi, 2021). Failure to comply – due to limited time, resources and oversight can affect 
the project throughout its service lifecycle with potentially dangerous outcomes. Despite its critical 
role, the inspection process remains predominantly manual—labour-intensive, prone to subjectivity, 
and fragmented knowledge (Xu et al., 2021; Einizinab et al., 2023). This traditional inspection process 
has been linked to inefficiencies, cost overruns and delays (Preito et al., 2021; Shariq & Hughes, 2020; 
Zhang & El-Gohary, 2013), with error rates of 20-30% across various tasks (Mott et al., 2022). The errors 
can have severe consequences, as seen in: 

• Oscar Traynor Development Project (Ireland), 2024: Delays and redesigns stemming from 
inspection-related quality issues. 

• Grenfell Tower Fire (UK), 2017: Catastrophic loss linked to regulatory oversights and non-
compliant cladding. 

• Oxgangs Primary School (Edinburgh), 2017: Wall collapse caused by inadequate 
construction and missed inspections. 

• Priory Hall (Dublin, Ireland), 2011: Evacuation due to fire safety non-compliance. 

An Irish Independent Working Group reported that between 1991 - 2013, 50-80% of apartments and 
duplexes had at least one of three defects - fire safety, structural safety, or water ingress (Neely, 2022). 
These incidents have underscored the urgent need to enhance transparency, traceability, and rigour in 
inspection processes. Recent years have seen a surge in research into inspection automation and 
digital workflows (Samsami, 2024; Halder et al., 2023) such as laser scanning, computer vision, IoT 
sensors, robotics, BIM, point cloud and virtual reality. While several review papers (Samsami, 2024; 
Einizinab et al., 2023; Asgari & Rahimian, 2017) have explored digitalised inspection, they focus on 
isolated technologies or narrow use cases without mapping how they fit within the wider compliance 
workflow and evaluate their practical applications on site. A more comprehensive review is needed to 
classify solutions by their purpose, technological foundation, and alignment to compliance objectives. 
This scoping review examines the breadth of automated solutions by classifying hardware (e.g., 
camera, laser scanning, UAV, robotics) and software technologies (e.g., ML, AI algorithms, web 
platforms) used across building elements and inspection types. The study evaluates the statistical 
association between building elements and inspection types and analyses integrated hardware–
software technology stacks and inspection types to determine highly automatable inspection tasks 
and underutilised technology stacks with potential for broader application. 

2 Methods 

This scoping review addresses three key questions: 
• RQ1: What digital technologies are used to automate construction onsite inspection? 
• RQ2: What types of inspections are performed using these technologies? 
• RQ3: Which building elements are being inspected? 
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The PCC (Population–Concept–Context) framework was developed from the review questions, 
following JBI guidelines (Peters et al., 2020). This framework provides context to define the scope and 
selection criteria. 

• Population: Construction inspections for compliance checks. 
• Concept: Digital technologies and automation, encompassing both hardware (e.g., sensors, 

robots, UAVs) and software (e.g., models, algorithms, analysis). 
• Context: Onsite inspections during the construction phase of the project. 

2.1 Search Strategy & Eligibility Criteria 

The review followed the JBI methodology (Peters et al., 2020), using the PCC framework to guide 
selection and scope. Two databases—SCOPUS and Web of Science (WoS)—were used for their 
comprehensive coverage of peer-reviewed engineering and construction literature (Aboiye et al., 2021; 
Darko et al., 2020). 

Inclusion Criteria: 
• Published between 2020–2025, in English 
• Focused on onsite inspection activities during construction phase 

Exclusion Criteria: 
• Review papers, published before 2020, or non-English papers 
• Studies focused on design-phase compliance, automated code checking, or semantic 

segmentation, dataset annotation 
• Focused on robot path planning, or progress monitoring 
• Non-construction industry domains (e.g., aerospace, welding, power stations, textiles) 
• Focused on post-construction such as facility management, structural health monitoring, 

post-earthquake assessments, underwater inspections 

Search terms were developed by breaking down the review questions into thematic keywords related 
to inspection, compliance, and digital technologies. Terms were refined and combined using Boolean 
operators. The final search string included groupings such as: 

TITLE-ABS-KEY (inspection* OR “compliance” OR “defect detection”) AND (automation OR “digital 
tools” OR “AI” OR “machine learning” OR “UAVs” OR “laser scanning”). 

Final filtering by document type and subject area excluded unrelated fields and non-peer-reviewed 
sources. 

2.2 Selection of Sources 

The study selection followed the JBI methodology (Peters et al., 2020). Search results were first 
exported to EndNote and then screened in Rayyan, a specialised platform for systematic screening 
(Mak & Thomas, 2022). Here duplicate entries were removed, and inclusion/exclusion decisions were 
applied on the titles and abstract level. 

In a review, a minimum of two independent reviewers is ideal (Peters et al., 2020; Arksey & O’Malley, 
2005). However, following Mak and Thomas (2022), a calibration exercise was conducted on 5% of the 
initially identified studies and reviewed independently by both authors. Upon reaching consensus, the 
first author screened the remaining papers. Full texts were retrieved for shortlisted studies and 
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reviewed in full against the eligibility criteria to produce the final list of studies. As a final validation 
step, a subset of the included full-text articles was reviewed by the second author to ensure 
consistency and rigour in the selection process. A total of 136 papers were included in the final review. 
The process is summarised in the PRISMA flow diagram (Figure 1). 

Figure 1. PRISMA flow diagram for the scoping review process. 

2.3 Data Charting & Transformation 

Following scoping review guidelines by Peters et al. (2015) and Arksey and O’Malley (2005), the data 
charting exercise was conducted alongside the full-text screening. An Excel table was used to record 
key characteristics of each study which included author, year, journal, location, hardware/software 
used, inspection purpose, building element, outcomes, and limitations. The charting exercise adopted 
a descriptive approach which was then modified into a structured format suitable for analysis. The 
charted data was processed through four transformation steps. 

• Data Cleaning to correct typos and formatting, 
• Data Parsing to split multi-item fields, 
• Data Normalisation to group inspection types into: Defect, Dimension, Alignment, and 

Identification 
• Data Grouping of building elements into 13 categories including building interiors, external 

surfaces, concrete structures, reinforcement bars, prefabricated components, steel 
structures, etc. 

These transformations enabled consistent, scalable analysis across the dataset and supported more 
meaningful insights in subsequent sections. 
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3 Results – Key Findings 
3.1 Publication & Geographic Distribution 

To understand the scope and distribution of construction inspection automation, this review first 
mapped the journal publications and geographic origins of the studies. The journal frequency analysis, 
presented in Figure 2, shows that Automation in Construction is by far the leading outlet for studies in 
this domain, publishing 30 papers—nearly double the next most common journal, Buildings (16), 
followed by Journal of Construction Engineering and Management (ASCE) and Applied Sciences. In 
terms of geographic distribution (Figure 3), China leads in research output, contributing 48 studies, 
followed by South Korea (18), the USA (14), and Hong Kong (9). This suggests a concentration of 
research in areas driven by investments and modernisation. Notably, Europe, South America, and 
Africa are underrepresented indicating potential regions where further research or adoption may still 
be emerging. 

 

 

 

 

 

 

 

 

 

Figure 2. Journal Publication Frequency. 

 
 

 

 

 

 

 

 

 

Figure 3. Geographic Distribution. 

3.2 Hardware Tools 

To address the first review question (RQ1), it is essential to analyse the hardware and software tools 
employed in the selected studies. This analysis not only provides insight into the current state of 
technological adoption but also reflects broader trends in the digitalisation and automation of 
construction inspection practices. The charts below (Figure 4 and Figure 5) present the top 15 most 
frequently used hardware and software/algorithmic technologies respectively, grouped by 
consolidated categories across all included studies. 
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Figure 4. Hardware Frequency. 

Laser scanner (LiDAR) was the most used, applied in tasks such as alignment of prefabricated wall 
panels (Wang et al., 2024); measuring façades (Polat & Ali, 2023) and precast concrete structures 
(Liang & Xu, 2023; Xu et al., 2022). Cameras followed closely used for reality capture such as industrial 
cameras used in capturing concrete cracks and bugholes (Liu et al., 2024); mobile GoPro cameras for 
capturing general construction activities or reinforcement bar details (Guo et al., 2025; Kardovskyi & 
Moon, 2021); stereo cameras or multi-lens cameras that capture multiple viewpoints of an activity for 
capturing concrete hairline cracks or indoor facility elements such as pipelines, HVAC, air ducts 
(Alamdari & Ebrahimkhanlou, 2024; Gao et al., 2023) as well as other types of cameras such as depth 
cameras (Kim et al., 2024; Kang et al., 2022) for depth perception images and RGB cameras (Yang et 
al., 2023; Xu et al., 2022) that captures images in the visible light spectrum, using sensors that are 
sensitive to the primary colours - red, green, and blue. 

Other key hardware technologies identified include UAVs or drone systems, frequently used for remote 
or aerial inspection of facades or roofs often combined with vision-based algorithms to detect cracks 
or assess damages (Zhang et al., 2023; Gomez & Tascon, 2021; Tan et al., 2021). Robotic systems, 
such as wheeled or quadruped robots, were typically deployed for automated navigation and scanning 
in building interior, construction sites, or concrete structure inspections (Feng et al., 2025; Halder et 
al., 2023; Halder et al., 2022; Park et al., 2023). 

Building Information Modelling (BIM) tools, though not physical hardware, was typically used in 
combination with laser scanning, cameras, Augmented Reality (AR)/Virtual Reality (VR) for scan-to-
BIM methods to enable visual comparison, rule-based checking, or overlay of as-built vs. as-designed 
conditions (Tan et al., 2024; Polat & Ali, 2023; Zhang et al., 2023). Smartphones enabled lightweight 
and cost effective data collection (Liao et al., 2023; May et al., 2022), while Microsoft HoloLens, a 
head-mounted AR device, provided mixed-reality overlays (Dzeng et al., 2024; Chi et al., 2022). 
Overall, the results show that the hardware landscape is heavily oriented toward visual and spatial 
data acquisition, with strong support for mobile, aerial, and augmented inspection modes. 

The extensive use of cameras and LiDAR systems in research reflects the industry’s prioritisation of 
technologies of capturing physical site conditions accurately. The use of these tools highlight the need 
to address one of the fundamental compliance challenges of visual accuracy in detecting surface-
level defects (e.g. cracks, voids, etc.) and spatial alignment (e.g. flatness, element placement, etc.) 
Further, the adoption of smartphones and drones as means to capture visual data reflects a demand 
for accessible, low-barrier technologies that are commercially available, require minimal training, and 
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can be readily integrated into routine site operations. This trend suggests that future research in 
compliance automation is expected to be centred around low-barrier technologies in acquiring real-
time visual data enabling timely, objective verification of construction quality and reducing the 
limitations of manual inspection. 

3.3 Software/Algorithm Tools 
 

 

 

 

 

 

 

 

 

Figure 5. Software/Algorithm Frequency. 

A range of AI and geometric processing models were used to automate inspection tasks. 
Convolutional Neural Networks (CNN) models was the most widely used tool which is a machine 
learning (ML) model used for image-based object or defect detection and classification. Variants of 
CNN included Monocular CNN-based depth estimation that enables the extraction of depth 
information from a single RGB image (Perez & Tah, 2023), Mask R-CNN used for instance 
segmentation, allowing the model to detect defects along with their precise boundaries (Chang et al., 
2024), Faster R-CNN optimised for object detection with high accuracy (Lee et al., 2020) and 3D CNN 
that extends to volumetric calculations (Wu et al., 2023). Random Sample Consensus (RANSAC) 
follows closely which is used to identify patterns in messy or noisy data and acts as a smart filter to 
identify the real geometry of inspected elements. This model was commonly used in point cloud 
alignment, outlier removal, and object pose estimation (Al-Sabbag et al., 2024; Cui et al., 2024; Guo et 
al., 2024). Another object detection model significantly used is the You Only Look Once (YOLO) model 
which is a real-time object detection model that can find and classify multiple objects in a single 
image. Unlike traditional CNN models that may process regions one at a time, YOLO scans the entire 
image at once, making it much faster. Several versions of this model was used in the reviewed papers 
such as YOLOv3 (Ma et al., 2022), YOLOv5 (Li et al., 2024), YOLOv8 (Golpour et al., 2024), and 
YOLOv11 (Iqbal et al., 2025). 

Other frequently used tools included segmentation model which performed semantic or instance 
segmentation in order to isolate particular items like cracks, walls, or pipes in images (Alamdari & 
Ebrahimkhanlou, 2024; Boerzel et al., 2023). Point Cloud Processing Algorithms are techniques for 
filtering, meshing, and geometric analysis of 3D scan data (Li et al., 2024; Kim et al., 2022). 
Simultaneous Localization and Mapping (SLAM) techniques assists devices to build a map of its 
surroundings while also figuring out where it is within that map. It is used in mobile or robotic 
inspection systems to track movement through a construction site (Chen et al., 2025; Becker et al., 
2023). Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is a tool for finding 
clusters or groupings in spatial data—like identifying areas with a lot of defects or grouping points in a 
scan that belong to the same wall or slab (Kim et al., 2021; Li et al., 2021). 
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Other notable tools include Iterative Closest Point (ICP) for 3D registration (Tan et al., 2024; Yuan et al., 
2023), and Principal Component Analysis (PCA) for dimensionality reduction and feature extraction 
(Guo et al., 2024; Truong-Hong & Lindenbergh, 2022). These results demonstrate a strong reliance on 
computer vision, object detection, point cloud processing, and spatial reasoning, showing that 
inspection automation is being driven by a fusion of geometric analysis and machine learning. 

The dominance of CNN, YOLO, and RANSAC indicates a shift toward automated visual reasoning and 
geometric verification, which directly addresses human limitations in detecting small-scale defects, 
assessing complex geometries, or managing the volume of inspection tasks. These algorithms allow 
systems to make consistent, accurate and faster decisions. Their use suggests that compliance 
enforcement is moving toward data-driven pattern recognition, where systems learn typical failure 
patterns and flag them before they escalate. For practitioners, adopting such tools can streamline 
repetitive checks and ensure early compliance verification with far greater coverage than manual 
methods. 

3.4 Relationship Between Building Elements and Inspection Types 

Building elements and their corresponding inspection types were analysed to address RQ2 and RQ3. 
As shown in Figure 6, concrete structures (29), building interiors (26), and reinforcement bars (20) were 
the most frequently inspected. Elements such as prefabricated components, steel structures, and 
temporary structures also featured significantly, whereas components like HVAC systems, pavement 
surfaces, and equipment were far less represented. 

 

 

 

 

 

 

 

 

 

Figure 6. Building Elements Inspected. 

The heatmap in Figure 7 maps inspection types—defect, dimension, alignment, and identification—to 
each element. This revealed key inspection preferences: 

• Defect inspections were most prevalent in concrete structures (Al-Sabbag et al., 2024; Artus 
et al., 2022), building interior surfaces (Halder et al., 2023; Gomez & Tascon, 2021) such as 
walls, columns, and floors, due to vulnerability to cracks, spalling, and material-related 
damage. 

• Alignment inspections were dominant for reinforcement bars (Chang et al., 2024; Xi et al., 
2023) and interior structural components (Park et al., 2023; Govindaraju et al., 2023). 

• Dimension checks were frequently performed on reinforcement bars (Wang et al., 2025; 
Wang et al., 2024), building interiors (Gao et al., 2023; Rada et al., 2023) and prefabricated 
elements (Li & Kim, 2021; Li et al., 2021). 
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• Identification-based inspections were limited to verifying reinforcement bar count (Wang et 
al., 2023; Yuan et al., 2023) in concrete structures before concrete pouring. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Inspection Type vs. Building Element Heatmap. 

A Chi-square test of independence confirmed a statistically significant relationship between building 
elements and inspection types (χ² = 67.53, df = 36, p < 0.01). This supports the observation that 
inspection methods are highly context-dependent, shaped by the functional role, material 
characteristics, and construction sequence of each element. This test showed that surfaces and 
façades are predominantly inspected for defects, driven by visual/aesthetic demands and exposure to 
the environment. Structural cores (beams, columns, slabs) are inspected mainly for alignment while 
interior spaces and prefabricated modules are inspected for dimensional accuracy. However, an 
underrepresentation of temporary structures and equipment suggests a research gap, particularly in 
developing adaptive, real-time inspection systems for rapidly changing site elements. 

The element-wise analysis confirms that different building elements demand distinct compliance 
checks—such as visual defect detection for surfaces, dimensional verification for rebars or 
prefabricated components, or alignment checks for structural cores. This inherently supposes that 
different technologies are required for different inspection tasks. The element-to-inspection mapping 
presented in this study offers for the first time a reference point for industry to align specific 
compliance needs with appropriate digital tools. The onus now lies with practitioners to prioritise 
inspection checks based on their cost of non-compliance, current capability gaps, or the feasibility of 
small-scale pilot implementations. For researchers, this study provides a foundation for further inquiry 
into the barriers to technology adoption and highlights the need to develop strategies that actively 
reduce these barriers to support widespread implementation. 

3.5 Tech Stack (Hardware + Software Combination) vs. Inspection Type 

To understand the broader direction of technological adoption in construction inspection, it is crucial 
to analyse which combinations of hardware and software tools are frequently used. The analysis of 
consolidated technology stacks—grouped as hardware + software combinations—against inspection 
types revealed several dominant themes and emergent insights as shown in Figure 8. 
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Defect detection emerged as the most addressed inspection task in terms of frequency and diversity 
of technology stacks. It is supported by a variety of camera- and AI-based combinations. The leading 
combinations include All Camera Types + CNN Models (13), All Camera Types + YOLO Variants (10), All 
Laser Scanners (LiDAR) + RANSAC (4) showing predominant research investment in automating visual 
defect detection using AI. Alignment and Dimension inspections are more selectively addressed but 
show clear reliance on geometric precision technologies which suggests its demanding nature. It is 
used alongside 3D capture technologies and spatial analytics, particularly in structure verification, 
prefabrication checks, and large-scale layout validation. All Laser Scanners (LiDAR) + RANSAC  is the 
most commonly used technology stack for alignment and dimension checking. Identification check is 
the least explored inspection type but shows promise in vision-based recognition for MEP systems, 
structural embedment, and construction assets. 

The concentration of certain tech stacks around specific inspection types reflects a functional match 
between compliance tasks and digital tool capabilities. For instance, visual tasks like defect detection 
are well served by camera + CNN stacks, while alignment tasks require LiDAR + RANSAC due to their 
spatial accuracy. Both industry and researchers can apply this analysis to build modular inspection 
systems, selecting stack combinations based on the compliance outcome desired. This makes 
inspection not only more efficient but also more targeted and standardised. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Technology Stack VS Inspection Type Heatmap. 

4 Discussion 

The preceding analysis forms the foundation for the guidance and recommendations made in this 
section. This section provides a strategic focus to identify scalable technologies in specific inspection 
areas and transition them to real world deployment. 

From the analysis, it is clear that certain combinations are useful for multiple of inspection types. 
These technology stacks should be the focus for practitioners, researchers, and technology 
developers to invest in scaling and maturing current systems. Based on the analysis, the following 
combinations should be the focus of further real-world experimentation, pilot testing, and potential 
product development as shown in Table I below. 
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Table I. Strategic Opportunities for Deployment and Scaling. 

Technology Stack Inspection Type(s) Recommendation 

All Camera Types + CNN 
Models 

Defect, Dimension, 
Identification 

Scale into multi-modal vision platforms; explore deployment via 
smartphones, drones, and wearables. 

All Laser Scanners (LiDAR) 
+ RANSAC 

Alignment, Dimension, 
Defect 

Mature into structural verification tools integrated with BIM. 

All UAV/Drone Systems + 
SLAM Variants 

Alignment, Defect, 
Dimension 

Ideal for external surface validation; explore further use in 
complex construction environments. 

These versatile tech stacks could enable modular inspection systems, with software adapted per 
task—suitable for scalable, real-world deployment. However, while many of the identified 
technologies such as LiDAR scanners or SLAM-equipped UAVs offer high precision, their cost can be 
prohibitive for large scale implementation. This creates a disparity in adoption, suggesting a need for 
affordable, scaled-down solutions that maintain functionality without overwhelming capital 
investment. 

Another key barrier to adoption is the integration of new technologies into legacy construction 
processes such as BIM coordination and quality control protocols. Without seamless interoperability, 
digital tools risk becoming isolated applications rather than embedded parts of the compliance 
workflow. In order to overcome this challenge, future solutions must prioritise open, interoperable 
design and tools should be adaptive to multiple data formats, support API development, and enable 
seamless integration with existing systems. 

Further, a gap matrix analysis was carried out to check which of the technology stack combinations 
were underused but had the potential for further research. Based on a consolidated gap analysis of 
more than 280 technology-inspection pairings, underexplored combinations that offer high potential 
for future research are listed in Table 2. 

Table II. Gap Matrix Analysis for underutilised technology stack combinations. 

Technology Stack Inspection Type Potential Capabilities 

UAV + SLAM Dimension UAVs provide rapid aerial coverage, and SLAM allows for accurate spatial 
reconstruction without relying on GPS. Together, they offer an effective 
solution for inspecting large-scale items on site. 

Robot Systems + 
Segmentation Models 

Identification Robots can navigate complex interior environments, while segmentation 
models can classify and locate components like MEP fixtures, fire 
systems, or other assets supporting rapid compliance checks. 

Laser Scanner (LiDAR) 
+ YOLO Variants 

Alignment LiDAR captures detailed 3D geometry, and YOLO can detect object types 
and positions. Their combination enables automated verification of 
element placement against design tolerances. 

Microsoft HoloLens + 
Point Cloud 
Processing 

Dimension The HoloLens provides an immersive AR interface for overlaying digital 
data onto physical space. Paired with point cloud algorithms, it enables 
real-time on-site identification and dimensional validation. 

These recommendations support strategic decision-making, helping in the prioritisation of 
technologies that have already demonstrated effectiveness and developing new research for 
technology combinations that are less explored but could fill significant functional gaps in the 
inspection workflow automation. Current regulatory standards often lack clear provisions for 
automated or digitally verified inspection outputs. In jurisdictions where compliance is document-
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based or manually recorded, the absence of digital validation frameworks can stall innovation despite 
technical readiness. While large-scale policy reform may be difficult and take time, digitalising 
compliance documentation and enabling automated data extraction from these inspection models 
provide the first steps toward regulatory alignment. 

In the context of the national and global construction industry, where inspection failures have had 
serious consequences, the guidance from this research is essential if we are to enhance quality and 
compliance on construction sites. The trends revealed form a call to action to move beyond academic 
research and focus on scaling, integrating, and commercialising solutions that work.  

However, a key aspect of the practical applicability of these solutions lies in the barriers they face to 
implementation. These include issues of cost, integration with legacy systems, regulatory readiness, 
and workforce adoption. Even with effective technologies, limited user familiarity and resistance to 
change can hinder large scale implementation. In order to realise the full potential of these technology 
stacks more effort is required in developing not just the technology itself but the supporting 
infrastructure, policy frameworks, and skills training. By addressing these barriers, the construction 
industry can move from fragmented innovations to scalable, system-wide adoption of digital 
compliance solutions. 

5 Conclusion 

This scoping review explored the digital technologies used in onsite construction inspection, 
addressing three central research questions – “what technologies are used?”, “what type of inspection 
they support?”, and “which building elements are being inspected?”. Through a thorough review of 136 
papers (2020–2025), the study revealed that laser scanners (LiDAR) and camera-based systems are 
the most used hardware, paired with AI-based algorithms like CNN, YOLO, and RANSAC. Concrete 
structures, building interiors, and reinforcement bars emerged as the most frequently inspected 
elements. Common inspection types included defect, dimension, alignment, and identification, with a 
significant relationship found between building elements and inspection types. The analysis shows 
that defect inspection is most common for concrete structures and building interior surfaces while 
alignment and dimension checks are common for reinforcement bars, interior structural components, 
and prefabricated elements. 

A key contribution of the study is the technology-inspection matrix, highlighting both high-performing 
technology stack combinations as well as underutilised ones. Notably, combinations such as Camera 
+ CNN models (for defect and dimension inspections) and LiDAR + RANSAC (for alignment and 
structural checks) showed consistent success across multiple inspection types and should be taken 
up for larger scale piloting and commercial deployment. Conversely, underexplored combinations like 
UAV + SLAM (for dimensional inspections of large-scale elements) and Robot Systems + Segmentation 
Models (for identification) represent high-potential avenues for future research and development. This 
evidence-led guidance addresses a clear gap in current literature which is a lack of strategic insight on 
how to take inspection automation from isolated experiments to integrated, site-ready solutions. 

While this review maps the current landscape of digital inspection tools, there is potential for further 
research. As a scoping review, this study did not conduct critical appraisal of individual studies, and 
there remains a gap in understanding how these tools perform under practical, real-life constraints. 
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Many of the technologies identified are still at early-stage development and future research should 
assess their Technology Readiness Levels (TRLs), with a focus on progressing solutions from proof-of-
concepts to testing in real construction site conditions. Further, subsequent reviews should aim to 
appraise the state of technological maturity and the industry readiness of these technology stacks. 
The detailed findings of this review offer a practical framework for targeted digital adoption. These 
insights are especially relevant given persistent issues in construction quality and compliance failures, 
which carry substantial societal costs in terms of safety, performance, and trust in the built 
environment. As digital inspection technologies mature, their potential to proactively prevent defects, 
reduce rework, and ensure regulatory compliance will become a key enabler in the systemic 
improvement of the construction sector. 
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