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Visual understanding of complex construction site objects is critical for project safety 
management and worker-robot collaboration within the construction domain. However, 
deploying deep learning algorithms on construction sites presents significant challenges due 
to high data annotation costs, substantial computational requirements, and the absence of 
large-scale training datasets. While large-scale pre-trained multimodal foundation models 
have shown success in natural language understanding and visual recognition, their 
application in construction safety management remains limited because of the need for 
domain-specific knowledge. To address these challenges, this paper proposes a knowledge-
enhanced multimodal learning approach for few-shot object detection in construction 
scenarios. The proposed method comprises two components: (1) leveraging existing 
semantic knowledge in the construction domain to detect potential objects in construction 
scenes using a template matching approach; and (2) introducing a multimodal image 
semantic recognition method that integrates visual and textual knowledge specific to the 
construction field. We evaluate our approach on the AIMDataset. The results demonstrate 
that, without network training or large-scale construction samples, our method can achieve 
effective object detection under few-shot conditions using only existing models and a small 
amount of provided visual and textual knowledge. This approach highlights its potential for 
applications in construction scenarios. 
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1 Introduction 
Visual understanding of large-scale machinery and objects on construction sites supports automated 
monitoring systems, enhancing operational control. It enables personnel to assess resource efficiency 
(e.g., direct work efficiency, hourly productivity) and diagnose productivity losses (Rezazadeh Azar, 
2017; Roberts et al., 2020; Yang et al., 2015). Continuous monitoring also detects hazardous objects 
and unsafe behaviors, including automated recognition of worker–machinery interactions (Seo et al., 
2015). Camera-based image analysis facilitates vision-based remote oversight (Ham et al., 2016; Kim 
et al., 2019). This enhances safety, quality, speed, and profitability. Thus, timely and accurate 
monitoring of machinery and facilities is vital for effective project control. 

Most state-of-the-art methods rely on traditional deep learning, which demands large, precisely labeled 
datasets (e.g., object types, locations) for high-performance vision algorithms (Paneru & Jeelani, 2021). 
This process is time-consuming, costly, and labor-intensive, complicating the creation of extensive, 
high-quality image datasets (Kim, 2020; Kim & Chi, 2017; Liu & Golparvar-Fard, 2015; Y. Wang et al., 
2019). The challenge intensifies with machinery variability across construction phases, requiring 
constant dataset updates. In practice, vision-based monitoring faces three key data challenges: (1) 
privacy limits data availability and sharing; (2) data collection and labeling disrupt workflows (Teizer, 
2015); and (3) dynamic site conditions vary by time and location (Paneru & Jeelani, 2021). Hence, 
computer vision algorithms requiring fewer samples and shorter training times are preferred for 
construction applications. 

Few-shot object detection achieves promising results in recognizing novel objects from limited samples. 
These methods typically train a base model on a large dataset of base classes, fine-tune it on a small 
labeled support set of novel classes, and evaluate it on a test set containing those classes. Research 
has largely focused on extracting meta-knowledge from the base dataset, which critically influences 
detection performance (Zhou et al., 2020), partly due to limited understanding of optimal base dataset 
construction. Additionally, collecting and annotating base datasets poses further challenges in 
construction applications. 

Foundation and multimodal models (e.g., BERT, GPT, CLIP) show strong potential for feature transfer 
and generalization across diverse tasks (Brown et al., 2020; Devlin et al., 2019; Radford et al., 2021). 
These models support vision-language pretraining tailored to construction, enhancing safety 
management. Their development underpins specialized models by providing rich linguistic and visual 
knowledge for construction-target detection. However, their application in construction safety remains 
limited due to the need for domain-specific expertise. 

In this paper, our goal is to integrate visual and textual knowledge specific to the construction domain 
to develop a multimodal object detection method tailored for construction scenarios, referred to as 
knowledge-enhanced automatic detection. We propose a few-shot learning approach based on a 
knowledge-enhanced vision-language model for the localization and identification of large-scale 
machinery on construction sites. Specifically, this work makes two major contributions: (1) Localization 
of Construction Machinery: We propose a template-matching-based method for locating construction 
machinery. By leveraging the powerful feature extraction and similarity computation capabilities of 
existing self-supervised visual models, this method matches given visual knowledge of construction 
machinery with environmental visual targets to locate the machinery. The approach does not require 
retraining network parameters and relies solely on existing vision foundation models. (2) Classification 
of Construction Machinery: We construct a similarity distribution matrix infused with construction 
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domain knowledge to enhance the association between the semantic representation of machinery 
target images and textual descriptions. This enables semantic classification of construction machinery. 
This study demonstrates the potential of using foundation models for few-shot learning in the 
recognition of objects on construction sites. The proposed method shows promise in enabling the 
identification of large-scale construction machinery using open-source text labels, handcrafted image 
prompts, and a small number of target images. 

The paper is structured as follows: Section 2 reviews object detection and classification methods in 
construction scenarios, few-shot learning approaches, and vision-language foundation models. 
Section 3 presents the proposed algorithm. Section 4 validates the algorithm through extensive 
experiments on a publicly available construction machinery dataset. Section 5 discusses the 
limitations of this work and potential future improvements. Section 6 concludes with a summary of the 
contributions. 

2 Literature Review 
2.1 Object Detection and Classification in Construction 

Deep learning algorithms now dominate various industry applications, particularly object detection, 
which includes two main types: two-stage detectors (e.g., Faster R-CNN) that generate region proposals 
before classification, and single-stage detectors (e.g., YOLO) that unify localization and classification 
(Redmon & Farhadi, 2018; Ren et al., 2017). 

2.2 Few-shot Learning Methods 

Recent applications in construction include facade defect detection via contrastive few-shot learning 
(Cui et al., 2022), structural damage classification using meta-learning (Xu et al., 2021), and few-shot 
object detection for emerging targets (Kim & Chi, 2021). Other examples include CLIP-based recognition 
of temporary objects (Liang et al., 2024) and detection of fall-related site objects for compliance checks 
(X. Wang & El-Gohary, 2024). 

2.3 Few-Shot Learning Based on Foundation Models 

Leveraging vast data and computational resources, foundation models have achieved major 
breakthroughs in computer vision and NLP. CLIP, trained on 400 million image-text pairs, demonstrates 
strong zero-shot image classification (Radford et al., 2021) . DINOv2 learns universal visual features via 
patch-level self-supervised learning (Oquab et al., 2023). Tip-Adapter (Zhang et al., 2022) enhances 
CLIP's zero-shot predictions via visual caching, where embeddings from a small image set serve as 
"keys" in a cache model. During inference, the test image is encoded using the same CLIP Image 
Encoder, and the label is predicted based on the most similar cached feature. Tip-X (Udandarao et al., 
2023)  incorporates image-text similarity to boost few-shot performance. 

3 Methodology 
In this section, we first outline the formulation of the problem we are addressing, followed by a detailed 
description of each component of our proposed method. 
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3.1 Algorithm Overview 

Our knowledge-enhanced detection method follows a two-stage process. In the first stage, the image 
and a template target are input, and a self-supervised encoder extracts features for target localization 
using feature matching. In the second stage, a CLIP-based zero-training prototype cache model is used 
for semantic classification of construction machinery. Unlike traditional few-shot detection, our 
method does not require meta-training on base classes, treating all target dataset classes as new. 

 

Figure 1 Knowledge-Enhanced Few-Shot Object Detection Method 

3.2 Construction Machinery Localization Method 

We illustrate the flow of the proposed method using two given construction machinery images as an 
example, as shown in Figure 2. First, two template construction machinery images and one target 
construction machinery image are provided. After passing through an image encoder, feature 
embeddings are generated for each, with pre-defined mask regions for the template images. We use the 
self-supervised image encoder DINOv2 to extract visual features from the template image 𝑥𝑥𝑟𝑟 and the 
target image 𝑥𝑥𝑡𝑡. The encoder computes the output features of the images using self-supervised network 
parameters, yielding the feature embeddings 𝑓𝑓𝑟𝑟  for the template image and 𝑓𝑓𝑡𝑡  for the target image, 
where 𝑓𝑓𝑟𝑟, 𝑓𝑓𝑡𝑡 ∈ ℝ𝐻𝐻×𝑊𝑊×𝐶𝐶 . We then compute the feature similarity between the two, with the similarity 
matrix calculated as follows: 

𝑆𝑆𝑆𝑆𝑆𝑆 = 𝐹𝐹(𝑥𝑥𝑟𝑟) ∙ 𝐹𝐹(𝑥𝑥𝑡𝑡)𝑇𝑇 (1) 

where, 𝑆𝑆𝑆𝑆𝑆𝑆  represents the feature similarity matrix between the template and target images, and 𝐹𝐹 
denotes the pretrained image encoder. 𝐹𝐹(𝑥𝑥𝑟𝑟) = 𝑓𝑓𝑟𝑟, 𝐹𝐹(𝑥𝑥𝑡𝑡) = 𝑓𝑓𝑡𝑡. 

After obtaining the similarity matrix between the template image and the target image, we use the 
Hungarian algorithm to obtain the most similar coordinates between the target image and the template 
image. In this case, we treat the similarity matrix 𝑆𝑆𝑆𝑆𝑆𝑆 as a cost matrix, and the goal is to find the optimal 
matching pairs between the template image and the target image. Specifically, we define the feature 
points of the template image as 𝑓𝑓𝑟𝑟𝑖𝑖 and the feature points of the target image as 𝑓𝑓𝑡𝑡𝑖𝑖. By matching the 
features of the mask region in the template image with the features in the target image, we obtain the 
location region 𝐵𝐵  of the construction machinery target in the target image. We define the position 
information of the feature points 𝑃𝑃 in the target image as {(𝑝𝑝𝑖𝑖𝑥𝑥, 𝑝𝑝𝑖𝑖

𝑦𝑦)}𝑖𝑖=1𝑁𝑁 , where 𝑁𝑁 is the number of feature 
points in the construction machinery region of the target image. This relationship can be mathematically 
defined as follows: 
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𝐵𝐵 =

⎩
⎪
⎨

⎪
⎧𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝𝑖𝑖𝑥𝑥) 𝑠𝑠. 𝑡𝑡. 𝑝𝑝 ∈ 𝑃𝑃
𝑚𝑚𝑚𝑚𝑚𝑚�𝑝𝑝𝑖𝑖

𝑦𝑦� 𝑠𝑠. 𝑡𝑡. 𝑝𝑝 ∈ 𝑃𝑃
𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝𝑖𝑖𝑥𝑥) 𝑠𝑠. 𝑡𝑡. 𝑝𝑝 ∈ 𝑃𝑃
𝑚𝑚𝑚𝑚𝑚𝑚�𝑝𝑝𝑖𝑖

𝑦𝑦� 𝑠𝑠. 𝑡𝑡. 𝑝𝑝 ∈ 𝑃𝑃

(2) 

Then, by converting the obtained feature point coordinates into the real coordinates of the construction 
image, we obtain the real position information of the construction target. 

 
 

Figure 2 Construction Machinery Localization Method with Integrated Domain Knowledge 

3.3 Construction Machinery Category Classification 

The CLIP Image Encoder encodes the image into 𝐼𝐼1 , and "Zero-shot Classification" generates 
𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧ℎ𝑜𝑜𝑜𝑜 ∈ ℝ1×𝑁𝑁 , where 𝑁𝑁  represents the number of object classes. In this study, we utilize Tip-
Adapter to construct a few-shot learning method for classifying construction machinery. First, we build 
a support set for the few-shot learning method, where the image embeddings and their corresponding 
class labels are stored as "key-value" pairs, as shown in Figure 3. Let 𝑁𝑁 be the number of categories in 
the target dataset and 𝐾𝐾 the number of images per class. The total number of images in the Support Set 
is 𝑛𝑛 = 𝐾𝐾 × 𝑁𝑁 . These 𝑛𝑛  supported images are encoded by the Image Encoder into image embeddings 
𝐼𝐼𝑆𝑆 ∈ ℝ𝑛𝑛×𝐶𝐶. The labels of the support images are encoded as One-Hot vectors 𝐿𝐿𝑆𝑆 ∈ ℝ𝑛𝑛×𝑁𝑁. 

𝐼𝐼𝑆𝑆 = 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝒟𝒟𝑆𝑆) (3) 

𝐿𝐿𝑆𝑆 = 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) (4) 

The Image Cache is created by storing the image embeddings 𝐼𝐼𝑆𝑆 and their corresponding class labels 𝐿𝐿𝑆𝑆 
as "key-value" pairs. The image features 𝐼𝐼𝑆𝑆 serve as the predictive weights when using the Image Cache, 
while 𝐿𝐿𝑆𝑆 provides the true class labels associated with the Image Cache.  

During the prediction phase, a query image is encoded as 𝐼𝐼𝑄𝑄 . The final image classification result, 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑣𝑣𝑣𝑣𝑣𝑣, is computed by comparing the query image's embedding with the entries in the Image Cache.  

𝐴𝐴𝑣𝑣𝑣𝑣𝑣𝑣 = exp�1 − 𝐼𝐼𝑄𝑄𝐼𝐼𝑆𝑆𝑇𝑇� (5) 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑣𝑣𝑣𝑣𝑣𝑣 = 𝐴𝐴𝑣𝑣𝑣𝑣𝑣𝑣𝐿𝐿𝑆𝑆 + 𝐼𝐼𝑄𝑄𝑊𝑊𝑇𝑇 (6) 

where, 𝑊𝑊 means the classifier weight matrix. 
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Figure 3 Method for Classifying Construction Machinery Categories 

4 Experimental results and analysis 
4.1 Datasets and Experimental Details 
Two experiments were conducted to validate the proposed method: one for few-shot learning and the 
other for zero-shot learning. Zero-shot learning relies on pre-trained weights for object recognition 
without prior domain-specific knowledge, while few-shot learning uses a small number of samples. The 
zero-shot method in this paper is applied only to object classification, with object localization relying 
on the proposed domain-knowledge-enhanced approach. The AIMDataset (Xiao & Kang, 2021), a 
popular construction benchmark, was used for training and testing. The dataset contains 3462 
samples, distributed as follows: cement truck (613), compactor (799), dozer (787), excavator (453), and 
wheel loader (810). The model was tested in various k-shot scenarios (0, 8, 16, 32, 64), and performance 
was evaluated using the mAP metric (Everingham et al., 2010). 

Table 1 Number of images per class 

Cement truck compactor dozer excavator Wheel loader SUM 
613 799 787 453 810 3462 

4.2 Performance of the Proposed Method 

Table 2 shows experimental results for different few-shot detection scenarios (k = 0, 8, 16, 32, 64). The 
model achieved a mean Average Precision (mAP) of 60.74% in the 64-shot scenario, detecting all 
construction equipment, with accuracies of 73.70% for "Compactor," 73.18% for "Cement truck," 
57.53% for "Dozer," 54.25% for "Excavator," and 45.05% for "Wheel loader." mAP improved as the number 
of images increased. However, detection errors were observed. For instance, recognition accuracy for 
"Dozer" was lower in the 16-shot scenario than in the 8-shot scenario, and the 32-shot scenario had 
lower accuracy than the 16-shot one. This may be due to the modality gap between image and text 
(Udandarao et al., 2023), as more samples did not always improve model performance. 

Table 2 Experimental Results of the Proposed Method 

 0-shot 8-shot 16-shot 32-shot 64-shot 

Compactor 2.04 31.53 55.65 46.78 73.70 

Cement truck 71.13 75.65 75.03 73.59 73.18 

Dozer 52.32 59.04 38.86 68.79 57.53 

Excavator 71.06 33.22 70.01 45.22 54.25 

Wheel loader 35.47 43.60 57.14 46.03 45.05 

Total mAP 46.40 48.61 59.34 56.08 60.74 
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The proposed few-shot learning method showed a significant positive impact in the experiments. As 
shown in Table 1, under the same conditions, few-shot learning consistently outperformed zero-shot 
learning for new classes. These results support the notion that multimodal foundation models with 
zero-shot capabilities struggle to adapt to specialized industries like construction. This suggests that 
few-shot learning not only reduces training data requirements but also enables rapid learning from 
limited data, making it suitable for real-world construction environments with diverse objects. 

5 Discussion and limitation 
The study demonstrated that the proposed method leverages multimodal foundation models for few-
shot learning in construction machinery detection. It first learns feature knowledge from template 
images to localize construction machinery and then distinguishes categorical attributes using image 
and textual knowledge. Figure 4 shows that the model performs well, even with varied shapes and colors 
of heavy equipment. These results suggest that the method effectively utilizes pretrained foundation 
models and domain-specific knowledge to represent construction scenes. 

 

Figure 4 Recognition results of the proposed method 

Few-shot models may struggle with target localization. For instance, a model may detect a construction 
object (e.g., "compactor") but fail to localize it accurately (Figure 5(a)). To address this, we propose using 
a self-similarity algorithm to differentiate target from background features. By leveraging self-supervised 
learning, the localization module removes non-target points without fine-tuning. While the matched 
target should ideally show the highest similarity, resolution differences between template and target 
images can complicate this. An image pyramid method can extract more detailed information. This 
study focuses on single-target recognition, with detection of multiple instances in the same category as 
future work. 

 

Figure 5 Example of Misidentification in Construction Machinery Localization 
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6 Conclusion 
This paper proposes a Few-shot Object Recognition Method for Construction Site Scenes using a 
Knowledge-enhanced Vision-Language Multimodal Model, covering machinery localization and 
classification. In a 64-shot scenario, the detector achieves 60.74% accuracy, while zero-shot learning 
is limited to 46.4%. The method leverages a visual foundation model for machinery localization without 
retraining and uses CLIP for text-based semantic classification, reducing data labeling costs and 
improving the system’s applicability on construction sites. The study introduces a domain-enhanced 
multimodal few-shot learning approach, providing quantitative results to demonstrate its feasibility. 
These findings lay the foundation for future research in vision-based construction monitoring and other 
areas, such as safety monitoring and human-machine collaboration. 
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