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Construction quality inspection is essential for verifying conformity between physical 
installations and design specifications. Traditional inspection methods rely heavily on 
manual comparison between construction drawings and onsite conditions, making the 
process labor-intensive, subjective, and lacking in digital traceability. Although laser scanning 
technologies have been widely adopted for capturing as-built data, the automated 
registration of local LiDAR scans to BIM models and the association of onsite components 
with their designed counterparts remain underdeveloped. To address these challenges, this 
study proposes a novel framework for local point cloud to BIM registration and component 
association, leveraging vision foundation models to enable component-level inspection 
directly on construction sites. The proposed framework comprises four main stages. First, 
raw LiDAR scans are preprocessed and converted into binary visibility maps centered on the 
LiDAR sensor. Second, synthetic visibility maps are generated by virtually scanning the BIM 
model from corresponding viewpoints. Third, both real and synthetic visibility maps are 
encoded using a vision foundation model to extract high-dimensional features. These 
features are compared to generate similarity maps for coarse localization, which is further 
refined using the Iterative Closest Point (ICP) algorithm to achieve accurate registration. 
Finally, onsite components are identified using the vision foundation model and matched to 
their corresponding BIM components through bipartite graph matching, solved via the 
Hungarian algorithm. Experiments conducted on real-world construction sites demonstrate 
the robustness and accuracy of the proposed method, validating its effectiveness for 
practical applications in construction quality inspection and digital twin development. 
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Highlights 
• LiDAR-centric visibility map features are designed and encoded using vision foundation 

models to capture spatial context effectively.  
• Local point cloud to BIM registration is achieved through feature comparison between real 

LiDAR scans and virtually generated scans from the BIM model. 
• Component association between onsite installations and BIM elements is formulated as a 

bipartite graph matching problem and solved using the Hungarian algorithm. 
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1 Section 1- Introduction  
Systematic monitoring of construction quality and progress is critical in the Architecture, Engineering, 
and Construction (AEC) industry, as it enables the timely detection of deviations between design intent 
and actual construction, thereby reducing delays and controlling costs. Accurate onsite alignment 
between construction status and design specifications facilitates essential tasks such as as-built 
verification and progress assessment. However, conventional inspection practices remain 
predominantly manual, relying on two-dimensional drawings and printed documentation. These 
methods are not only time-consuming and cognitively demanding but also prone to errors due to limited 
spatial perception and human memory constraints. 

To overcome these limitations, construction digital twins have gained increasing attention. On the 
digital side, Building Information Modeling (BIM) provides structured representations of design intent 
and lifecycle information, often integrated with mobile-accessible platforms such as Autodesk BIM 360 
Field. Simultaneously, LiDAR-based laser scanning technologies offer high-resolution spatial data, 
enabling precise documentation of as-built conditions and accurate digital archiving. A key requirement 
for realizing the potential of digital twins lies in the accurate registration of LiDAR-derived point clouds 
with BIM models, which is foundational for advanced applications such as augmented reality-based 
inspections and automated progress monitoring. While various localization technologies—such as QR 
codes, GPS, RFID, and Wi-Fi fingerprinting—have been proposed, they often suffer from practical 
deployment challenges, limited accuracy, and signal instability. In contrast, LiDAR-based approaches 
inherently provide rich spatial data suitable for localization, eliminating the need for additional 
infrastructure and simplifying implementation. 

To address the challenges of accurate alignment and component association, this study proposes a 
robust point cloud-to-BIM registration and component association framework leveraging vision 
foundation models. The framework enables effective onsite, component-level inspection and 
comprises four key stages: (1) preprocessing the as-built point cloud into LiDAR-centric visibility maps; 
(2) generating synthetic visibility maps from BIM through virtual scanning; (3) extracting high-
dimensional visual features using a vision foundation model (e.g., DINOv2) to compute similarity scores 
between real and synthetic views; and (4) associating as-built elements with their corresponding BIM 
components via bipartite graph matching, solved using the Hungarian algorithm. 

2 Section 2 – Literature Review  
2.1 Point Cloud Registration 

Point cloud registration is the process of aligning overlapping point cloud datasets by estimating spatial 
transformations, which is fundamental for applications such as SLAM, mapping, and aligning as-built 
data with digital models. Registration methods are typically categorized into optimization-based, 
feature-based, and learning-based approaches, with feature-based methods being the most widely 
adopted. These approaches generally involve four steps: local feature extraction, correspondence 
matching, outlier filtering, and refinement using the Iterative Closest Point (ICP) algorithm. 

Local descriptors have evolved significantly—from early handcrafted methods such as Fast Point 
Feature Histograms (FPFH)(Rusu et al., 2009), to more robust learning-based descriptors such as 
sparse convolutional networks FCGF (Choy et al., 2019), and fully convolutional techniques D3Feat (Bai 
et al., 2020). Effective outlier rejection is crucial to registration accuracy, with traditional methods like 
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RANSAC and more advanced techniques such as Fast Global Registration (FGR)(Zhou et al., 2016) and 
Teaser++ (Yang et al., 2020) significantly improving robustness. 

In the Architecture, Engineering, and Construction (AEC) domain, registration often involves aligning 
point clouds acquired via terrestrial laser scanning, SLAM, or Structure-from-Motion (SfM) with Building 
Information Models (BIM). This alignment supports tasks such as construction monitoring, quality 
inspection, and model enrichment. Current BIM-to-point cloud registration approaches typically follow 
a coarse-to-fine strategy, beginning with manual correspondences or commercial tools (e.g., Autodesk 
ReCap, Leica Cyclone), followed by refinement using ICP. Recent research has focused on automating 
this process by leveraging the geometric regularity of built environments. Notable geometric 
approaches include Bosché’s RANSAC-based plane matching (Bosché, 2012), Bueno’s Four-Plane 
Congruent Set method (Bueno et al., 2018). 

Local-to-global registration addresses a more complex scenario in which locally captured, partial point 
clouds must be aligned with global models without access to a complete global scan. This typically 
involves coarse localization using global descriptors, followed by fine registration. Scan Context (Kim 
and Kim, 2018), which uses polar representations, is a widely used global descriptor in LiDAR-based 
localization. Other notable methods include 3D-BBS (Aoki et al., 2024) and PointNetVLAD (Uy and Lee, 
2018), which leverage optimized voxel maps and deep-learned descriptors, respectively. More recently, 
semantic-driven registration approaches have emerged to address cross-domain challenges. For 
instance, SPVLoc (Gard et al., 2024) performs semantic panoramic viewport matching, while Zhao et al. 
utilize CNN-derived semantic features to bridge the visual-to-BIM domain gap, enhancing robustness 
in complex construction environments (Zhao and Cheah, 2023). 

2.2 Quality Inspection Based on Scan-vs-BIM  

Laser scanning has significantly advanced construction quality assurance by enabling the efficient 
capture of precise geometric data, reducing inspection time by over 60% compared to traditional visual 
methods. It supports infrastructure health monitoring by analyzing geometric indicators such as 
deformations, surface flatness, cracks, and seepage. Central to quality verification is the Scan-vs-BIM 
process, which compares as-built point clouds against as-designed BIM models to assess 
conformance with design specifications. 

At the point-level, the Scan-vs-BIM process begins with rough registration, followed by ICP-based fine 
alignment to unify the coordinate systems of the scan and the BIM model. Once aligned, deviation maps 
are generated to quantify geometric discrepancies, which are then visualized using threshold-based 
binary classification to identify compliant and non-compliant areas. Notable applications include 
Bosché’s steel element classification via BIM matching (Bosché, 2010) and Nahangi and Haas’s 
automated defect detection in MEP pipe spools using neighborhood-based ICP (Nahangi and Haas, 
2014). 

At the object-level, Scan-vs-BIM involves establishing correspondences between as-built and as-
designed components to enable more detailed dimensional analysis. For instance, Kim et al. 
introduced a dimensional quality control method for shipbuilding blocks by comparing measurement 
points with design-quality points (Kim et al., 2024). Fang et al. assessed tunnel excavation profiles 
against Dynamo parametric models (Fang et al., 2024). Mirzaei et al. employed neural networks for 
dimensional quality assessment of steel structures by segmenting structural elements and comparing 
lengths and spacings with design specifications (Mirzaei et al., 2023). Truong-Hong and Lindenbergh 
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proposed a region-growing method tailored for extracting concrete structural surfaces based on 
contextual geometry (Truong-Hong and Lindenbergh, 2022). Hu and Brilakis extended shape detection 
to match planar, curved, and linear structural elements using descriptor-based methods (Hu and 
Brilakis, 2024). Additional applications include rebar inspection and cylindrical MEP component 
verification using Hough Transform techniques. 

Despite these advances, existing methods often suffer from over-sensitivity to noise or depend heavily 
on custom semantic extraction rules, which limit their applicability in dynamic and complex 
construction environments. More critically, robust identification and precise matching of components 
remain challenging, making it difficult to systematically detect and quantify differences between as-
built and as-designed conditions. 

3 Methodology  
his study presents a novel construction quality inspection framework based on local point cloud to BIM 
registration and component association, leveraging a vision foundation model for robust feature 
representation. As illustrated in Figure 1, the proposed framework comprises four core modules: (1) 
generation of LiDAR-centric visibility maps from onsite point clouds, (2) virtual scanning of BIM models 
to generate synthetic reference visibility maps, (3) extraction and comparison of learned visual features 
using a vision foundation model, and (4) component association through bipartite graph matching. The 
detailed methodology for each module is presented in Sections 3.1 to 3.4. 

3.1 LiDAR-Centric Visibility Map Generation 

Accurate registration between onsite point clouds and as-designed digital models depends on 
obtaining a reliable initial estimate of the sensor's location and orientation. Achieving this initial 
alignment requires the use of modality-invariant features that are robust to differences in data 
acquisition methods. LiDAR-centric visibility maps are particularly well suited for this purpose, as they 
maintain geometric consistency across various scanning modalities. To generate these visibility maps, 
the as-built point cloud undergoes a sequence of preprocessing steps. The process begins with the 
detection of the ground plane to establish a consistent reference level. A horizontal slice is then 
extracted at a height strategically chosen to lie below typical architectural elements such as doors and 
windows, while remaining above common sources of clutter. This slicing operation yields a simplified 
yet informative geometric representation of the local environment. The resulting slice is projected into 
a two-dimensional binary grid-based map. This is achieved by determining the horizontal spatial extent 
of the point cloud and assigning each three-dimensional point to a corresponding grid cell using an 
efficient nearest neighbour search algorithm. Cells containing points are marked as occupied, forming 
a binary occupancy map. To improve the continuity and connectivity of structural features, 
morphological dilation is applied to the occupancy map, resulting in a refined LiDAR-centric visibility 
map that supports robust initial registration. To ensure consistency in feature extraction across different 
visibility maps, a standardization procedure is introduced. Specifically, a fixed spatial region within a 
ten-meter radius cantered at the LiDAR sensor position is extracted from the visibility map, providing a 
normalized input for subsequent processing stages. 
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Figure 1. Overview of the proposed local point cloud to BIM registration and component association 
framework based on vision foundation model  
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3.2 Virtual Scanning and Visibility Map Preparation 

In typical building environments, where primary structural and architectural elements adhere to their 
digital representations. This observation provides a reliable foundation for feature-based alignment 
between as-built and as-designed data. To facilitate accurate estimation of initial sensor positions and 
orientations, LiDAR-centric visibility maps are generated from BIM through a virtual scanning process 
that simulates real-world sensor viewpoints and occlusion patterns. The process begins by isolating 
primary static structural components, such as walls and columns, from the BIM model to ensure 
consistency with elements typically captured during onsite scanning. A binary two-dimensional floor 
plan is then generated from the model, and a uniform grid of candidate viewpoints is sampled across 
this plan. At each candidate viewpoint, virtual LiDAR scans are simulated using ray-casting techniques 
that replicate key sensor parameters, including field of view, angular resolution, and maximum sensing 
range. This generates noise-free synthetic point clouds that approximate real sensor outputs. These 
virtual scans are then processed using the same slicing and projection procedures applied to real-world 
LiDAR data. Specifically, each scan is sliced at a fixed height and projected into a two-dimensional 
binary occupancy map, resulting in standardized visibility maps. These synthetic maps are directly 
comparable to those derived from onsite scans, enabling robust cross-domain registration. 

3.3 Feature Encoding and Comparison for Local Point Cloud to BIM Registration 

To enable robust and semantically meaningful comparison between real and synthetic visibility maps, 
this study employs the vision foundation model DINOv2 for feature extraction (Oquab et al., 2023). 
DINOv2 is a state-of-the-art self-supervised model that has demonstrated exceptional performance in 
visual representation learning across large-scale datasets such as ImageNet and COCO. Its learned 
features exhibit strong semantic clustering properties, effectively grouping visually similar patterns 
while maintaining clear distinctions between dissimilar ones. This makes it particularly suitable for 
encoding visibility maps, which require both geometric and semantic discriminability. 

Figure 2. Local point cloud to BIM registration visualization 

 

Following feature extraction, the similarity between visual feature vectors from onsite and synthetic 
visibility maps is computed using cosine similarity, a widely used metric for high-dimensional vector 
comparison. The candidate viewpoint yielding the highest similarity score is selected as the most 
probable estimate of the sensor's location. The corresponding position and orientation are then 
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adopted as the initial alignment parameters. To further refine the registration, the Iterative Closest Point 
(ICP) algorithm is applied, producing an accurate transformation that aligns the onsite point cloud with 
the BIM-derived model as shown in Figure 2. 

3.4 Component Association through Bipartite Graph Matching 

Following the registration of the as-built point cloud to the as-designed BIM, it is essential to establish 
accurate component-level associations to enable effective quality inspection. Object recognition can 
be performed using advanced techniques such as Omni-Scan2BIM (Wang et al., 2024) or GroundDINO 
(Liu et al., 2024), which provide semantic segmentation and classification of structural and 
architectural elements from point cloud data. Once recognized, the inspection process focuses on 
identifying four primary types of discrepancies between the as-built and as-designed components: (1) 
spatial deviations (i.e., components installed in the wrong location), (2) incorrect family types (i.e., 
mismatches in component specifications), (3) missing components (i.e., modeled elements not 
present in the physical environment), and (4) redundant components (i.e., installed elements not 
represented in the design model). To support this analysis, essential object-level metadata—such as 
component identifiers, three-dimensional coordinates, categories, family types are extracted from the 
as-designed BIM.  

Figure 3. Component association between the as-built installations and the as-designed counterparts 
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For robust and accurate component matching, this study adopts a bipartite graph matching framework 
solved using the Hungarian algorithm, rather than relying on traditional sequential matching techniques. 
Sequential approaches are often sensitive to installation order and may fail under conditions of large 
spatial deviation or incomplete data. In the proposed framework, a weighted bipartite graph is 
constructed, where one set of nodes represents components from the BIM model and the other 
represents components identified in the as-built point cloud. The edges between nodes are weighted 
based on a composite metric incorporating spatial proximity, family type similarity, and geometric 
alignment, including orientation consistency for linear components. A cost matrix is derived from these 
edge weights and used by the Hungarian algorithm to determine the optimal one-to-one assignments 
between design and as-built components. The outcomes of this association process are interpreted as 
follows: matched components with correct types but positional discrepancies are classified as spatially 
deviating. Matched components with type mismatches are labelled as wrong type. Unmatched BIM 
components are considered missing, while unmatched as-built components are identified as 
redundant. The process has been illustrated in Figure 3. 

4 Validation  
To evaluate the effectiveness of the proposed local point cloud to digital model registration approach, 
point cloud data were acquired from 15 scanning stations across an active hospital construction site in 
Hong Kong. The data were collected using the LEICA RTC360 laser scanner, which offers high-precision 
measurements with an accuracy of approximately 2 mm, a resolution of 5 mm at a 10-meter range, a 
horizontal field of view of 360 degrees, and a vertical field of view of 300 degrees. The system is also 
equipped with high dynamic range (HDR) cameras capturing imagery at a resolution of 2048 × 2048 
pixels, enabling comprehensive visual documentation of the site. 

Registration performance was quantitatively assessed using registration recall, defined by a root-mean-
square error (RMSE)-based criterion. A registration was considered successful if the RMSE between the 
estimated and ground-truth scan alignment was below a 0.2-meter threshold. For comparative 
evaluation, a traditional local feature-based registration pipeline composed of Fast Point Feature 
Histograms (FPFH) and RANSAC was employed as the baseline method. 

To assess the accuracy of component-level association, a representative room containing 20 distinct 
components was selected. The association accuracy was computed as the success rate in correctly 
matching as-built components to their as-designed counterparts, based on human-defined ground 
truth. The proposed method was compared with a greedy matching algorithm, which sequentially 
associates components based on proximity or similarity in a first-come, first-served manner. 

Table I. Registration accuracy analysis of the proposed registration method and local feature based methods.  

Methods Hospital 
ICP Directly 0/15 

FPFH + RANSAC 1/15 
Proposed Method 14/15 

The results in Table I demonstrate that conventional local feature-based registration methods frequently 
struggle or fail outright in environments with repetitive architectural patterns, which introduce 
significant ambiguity into the matching process. In contrast, the proposed approach, which leverages 
deep visual features, consistently identifies the correct sensor location even under highly challenging 
conditions. These findings highlight the robustness and superior generalization capability of deep visual 
representations in complex real-world construction scenarios. 
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Also, as shown in Table I I, the proposed method successfully matched all 20 components in the test 
area with complete accuracy. In contrast, sequential matching methods based on sequential method 
exhibited inconsistent results due to their sensitivity to component processing order. This limitation was 
evident across three randomized trials, where the outcome varied significantly depending on the order 
of processing. The proposed bipartite graph matching approach consistently outperforms sequential 
methods, offering stable and accurate results even in the presence of substantial discrepancies 
between the BIM model and the built environment. These findings underscore the effectiveness of the 
proposed association strategy in supporting reliable and scalable construction quality inspection. 

Table I I. Component association accuracy analysis of the proposed method and the sequential method.  

Methods First Run Second Run Third Run Fourth Run Average 
Sequential Method 15/20 12/20 14/20 13/20 13.5/20 
Proposed Method 20/20 20/20 20/20 20/20 20/20 

5 Conclusions  
This study proposes a visibility-based approach for registering as-built point clouds to digital models, 
differing from traditional geometry-based methods that require manual feature design. Instead, it 
utilizes a pretrained vision foundation model for feature encoding, offering a more intuitive and holistic 
understanding aligned with human perception. The method addresses two key challenges in indoor 
registration: differing data modalities between point clouds and digital models, and the high self-
similarity of features in indoor environments. It also demonstrates robustness to discrepancies 
between the site and the model. After aligning the data, the correspondence between as-designed and 
as-built elements is framed as a bipartite graph matching problem, solved using the Hungarian 
algorithm. This enables automated quality checks by categorizing issues as wrong type, deviating, 
redundant, or missing. The method remains effective even for components with substantial installation 
deviations.  
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